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Definition

Pedagogic content knowledge, in Shulman’s
(1986, p. 7) terms, refers to: “the most powerful
analogies, illustrations, examples, explanations,
and demonstrations — [. . .] the most useful
ways of representing and formulating the subject
that make it comprehensible to others.”
Characteristics

Intense focus on the notion of “pedagogical con-
tent knowledge” (PCK) within teacher education
is attributed to Lee Shulman’s 1985 AERA Pres-
idential address (Shulman 1986) in which he
referred to PCK as the “special amalgam of
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content and pedagogy” central to the teaching of
subject matter. His widely cited follow-up paper
(Shulman 1987) elaborated PCK as follows:

the most powerful analogies, illustrations, exam-
ples, explanations, and demonstrations — [. . .] the
most useful ways of representing and formulating
the subject that make it comprehensible to
others. . .. Pedagogical content knowledge also
includes an understanding of what makes the learn-
ing of specific topics easy or difficult: the concep-
tions and preconceptions that students of different
ages and backgrounds bring with them. . .. (p. 7)

the particular form of content knowledge that
embodies the aspects of content most germane to
its teachability. (p. 9)

Immediate and widespread interest in the
notion rested on Shulman’s claim that PCK, com-
bined with subject knowledge and curriculum
knowledge, formed critical knowledge bases for
understanding and improving subject-specific
teaching. While subject matter knowledge and
PCK are frequently dealt with together in research
studies, interest, and contestation in the boundary
leads to separate but related entries for them in this
encyclopedia (see ▶ Subject Matter Knowledge
Within “Mathematical Knowledge for Teaching”
entry). PCK studies in mathematics education
indicate attempts at: (a) sharpening theorizations
of PCK, (b) measuring PCK, and (c) using notions
of PCK to build practical skills within teacher
education, or combinations of these elements.
This entry summarizes key work across these
groups.
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Theorizations of PCK

Key writings in the category of sharpening the-
orizations of PCK examine both the boundary
between PCK and the broader field of subject-
related knowledge – sometimes referred to as
“Mathematics knowledge for teaching” (MKT),
and inwards at subcategories within PCK.

Deborah Ball and the Michigan research group
sharpened the distinctions between content
knowledge and PCK in their theorization based
on the classroom practices of expert teachers:
“Subject Matter Knowledge” (SMK) broke
down into: common content knowledge (CCK),
specialized content knowledge (SCK), and hori-
zon knowledge; and PCK into: knowledge of
content and students (KCS), knowledge of con-
tent and teaching, and knowledge of curriculum
(Ball et al. 2008).

Critiques of work drawing from Shulman’s
categorizations argue that the “static” conceptu-
alization of MKT with separate components is
unhelpful in relation to the interactive and
dynamic nature of MKT. Centrally, these cri-
tiques argue that MKT is better interpreted as
an attribute of pedagogic practices in specific
contexts and related to specific mathematical
ideas, rather than a generalized attribute of the
teacher. Fennema and Franke’s (1992) concep-
tualization of MKTas constituted by knowledge
of mathematics, combined with PCK comprised
of elements of knowledge of learners’ mathe-
matical cognition, pedagogical knowledge, and
beliefs views this combination as a taxonomy
that can identify the “context-specific knowl-
edge” of a teacher, rather than a more general-
ized picture of the teacher’s MKT. Rowland
et al. (2003) similarly emphasize, in their
“Knowledge Quartet” formulation consisting
of Foundation, Transformation, Connection,
and Contingency knowledge (the latter three
relating to PCK) that the profile of MKT pro-
duced is a categorization of teaching situations,
rather than of teachers. Blömeke et al. (2015)
framework of teacher competence also explic-
itly views teacher competences as the outcome
of interaction between personal, situational, and
social features.
While all of these models were developed from
studies of practice, Fennema and Franke and
Rowland et al.’s models include a beliefs compo-
nent, or an affect component in BlÖmeke et al.’s
case – which does not feature in Ball et al.’s
conceptualization.

Other studies have looked at PCK in alterna-
tive formulations (e.g., Silverman and Thompson
2008), with the notion of “connections” within
mathematics and with learning (Askew et al.
1997; Ma 1999) seen as critical. Petrou and
Goulding (2011) provide an overview of key writ-
ings in the MKT field.
Measuring PCK

Ball’s research group shifted their attention into
measuring MKT to verify assumptions about its
relationship to teaching quality and student learn-
ing (Ball et al. 2005). The group developed mul-
tiple choice items based on specific MKT
subcomponents that were administered to
teachers, with data collected on their elementary
grade classes’ learning backgrounds and learning
gains across a year. Hill et al.’s (2005) analysis
showed content knowledge measures across the
common and specialized categories as signifi-
cantly associated with learning gains. While
Ball’s group conceptualizes CCK and SCK as
part of content knowledge, the descriptions of
SCK that are provided – e.g., understanding of
representations and explanations – fall within
other writers’ conceptualizations of PCK.

Baumert et al. (2010), noting the absence of
direct attention to teaching in Ball et al.’s
measurement-oriented work, developed the
COACTIV framework – that distinguished con-
tent knowledge from PCK and examined the rela-
tionships between content knowledge, PCK,
classroom teaching, and student learning gains in
Germany. In the COACTIV (Professional Com-
petence of Teachers, Cognitively Activating
Instruction, and the Development of Students’
Mathematical Literacy) model (focused on sec-
ondary mathematics teaching), content knowl-
edge is understood as “a profound mathematical
understanding of the mathematics taught at
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school” (p. 142), and PCK is subdivided into:
knowledge of mathematical tasks as instructional
tools, knowledge of students’ thinking and assess-
ment of understanding, and knowledge of multi-
ple representations and explanations of
mathematical problems. With this distinction,
separate content knowledge and PCK open
response items were developed and administered
to nearly 200 teachers in different tracks of the
German schooling system. Mathematics test per-
formance data were gathered from over 4000 stu-
dents in these teachers’ classes. Instructional
quality was measured through three data sources.
The first encompassed selected class, homework,
test and examinations tasks, and the degree of
alignment between assessment tasks and the
Grade 10 curriculum. The second source consid-
ered the extent of individual learning support,
measured through student rating scales. The
third source examined classroom management as
degree of agreement between teacher and student
perceptions about disciplinary climate.

Baumert et al.’s findings suggested that their
theoretical division of content knowledge and
PCK was empirically distinguishable, with their
PCK variable showing more substantial associa-
tions with student achievement and instructional
quality than their content knowledge variable.
P

Using PCK to Support the Development
of Pedagogic Practice

The third category of PCK literature links to stud-
ies of teacher development using PCK frame-
works. This strand often uses longitudinal case
study methodologies.

Fennema and Franke, and Rowland’s MKT
models have associated development-focused
studies. Turner and Rowland (2011) provide
examples of the Knowledge Quartet’s use in
England to stimulate development of teaching,
and Fennema and Franke, with colleagues, have
produced studies on the longevity of the PCK
aspects presented within professional develop-
ment programs.

This category too contains other studies draw-
ing on aspects of PCK. Kinach (2002) focuses on
secondary mathematics teachers’ development of
instructional explanations – a key feature of PCK
across different formulations. Learning studies
interventions (Lo and Pong 2005) focus on build-
ing teachers’ awareness of the relationship
between particular objects of learning and stu-
dents’ work with these objects – a feature of the
KCS terrain.
Emerging Directions

Emerging work reflects, in some ways, an increas-
ingly polarized world. One line of PCK research is
focused on pedagogical technological knowledge:
teachers’ awareness and competence with inte-
grating technology into their mathematics teach-
ing in ways that support learning (Clark-Wilson
et al. 2014). Another line of research questions the
assumption of basic coherence and connection in
MKT that underlies much of the PCK writing
(Silverman and Thompson 2008). Frameworks
developed from qualitative case studies of class-
room teaching detail inferences relating to PCK
(and SMK) in contexts of pedagogic fragmenta-
tion and disconnections, where, as Askew (2018)
notes, assumptions of “a baseline of mathematical
coherence in lessons . . . is not yet in place.”

PCK as a field therefore continues to thrive, in
spite of ongoing differences in nomenclature,
underlying views about specific subelements,
and the nature of their interaction.
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Definition

Policy in mathematics education concerns the
nature and shape of the mathematics curriculum,
that is, the course of study in mathematics of a
school or college. This is the teaching sequence
for the subject as planned and experienced by the
learner. Four aspects can be distinguished, and
these are the focuses of policy debates:

1. The aims, goals, and overall philosophy of the
curriculum

2. The planned mathematical content and its
sequencing, as in a syllabus

3. The pedagogy employed by teachers
4. The assessment system
History

The NewMath debate of the late 1950s to the mid-
1960s was primarily about the content of the
mathematics curriculum. At that time traditional
school mathematics did not incorporate any mod-
ern topics. The content consisted primarily of
arithmetic at elementary school, plus traditional
algebra, Euclidean geometry, and trigonometry at
high school. The New Math curriculum broad-
ened the elementary curriculum to include other
aspects of mathematics, and high school mathe-
matics incorporated modern algebra (including
sets, functions, matrices, vectors), statistics and
probability, computer mathematics (including
base arithmetic), and modern geometry
(transformation geometry, topological graph the-
ory). The launch of Sputnik, the first earth orbiting
satellite, by the Soviet Union in 1957, during the
Cold War led to fears that the USA and UK were
being overtaken in technology and inmathematics
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and science education by the Soviets. Govern-
ment funding became available, especially in the
USA, to extend projects modernizing the mathe-
matics curriculum in a bid to broaden and improve
students’ knowledge of mathematics, such as the
Madison Project in 1957 and The School Mathe-
matics Study Group in 1958 in the USA. In the
UK independent curriculum projects emerged,
including the School Mathematics Project (SMP)
in 1961 and Nuffield Primary Mathematics in
1964. These projects did not cause much contro-
versy at the national policy levels although there
was a concern by parents that they did not under-
stand the New Math their children were learning.
The relatively muted debates concerned the
changing content of the mathematics curriculum
rather than its pedagogy or assessment.

In the mid to late 1960s onwards a new debate
emerged about discovery learning. In the UK the
Schools Council Curriculum Report No. 1 (Biggs
1965) on the teaching and learning of mathemat-
ics in primary school proposed practical
approaches and “discovery learning” as the most
effective ways of teaching mathematics. Sixty-
five percent of all primary teachers in the UK
read Biggs (1965), and it had a significant impact.
Discovery learning was a central part of the 1957
Madison Project developed by Robert B. Davis.
This and similar developments led to a major
policy debate on discovery learning. Is discovery
learning the most effective way to learn mathe-
matics? Proponents of discovery contrasted it
with rote learning. Self-evidently rote learning
cannot be the best way to learn all but the simplest
mathematical facts and skills since it means sim-
ply “learning by heart.” However, educational
psychologist Ausubel (1968) argued successfully
that discovery and rote learning are not part of a
continuum but on two orthogonal axes defined by
pairs of opposites: meaningful versus rote learn-
ing and reception versus discovery learning.
Meaningful learning is linked to existing knowl-
edge; it is relational and conceptual. Rote learning
is arbitrary, verbatim, and disconnected –
unrelated to other existing knowledge of the
learner. Knowledge learned by reception comes
already formulated and is acquired through com-
munication, such as in expository teaching or
reading. Ausubel distinguishes this from discov-
ered knowledge that has to be formulated by the
learner herself.

The promotion of discovery learning led to
heated debate on both sides of the
Atlantic. Shulman and Keislar (1966) offered a
review, but to this day the evidence remains
equivocal. This debate was primarily about
pedagogy – how best to teach mathematics. But
underneath this debate one can discern battle lines
being drawn between a child-centered, progres-
sive ideology of education with roots going back
to Rousseau, Montessori, Dewey, and a tradition-
alist teacher- and knowledge-centered ideology of
education favored by some mathematicians and
university academics.

The mid-1970s saw the birth of the back-to-
basics movement promoting basic arithmetical
skills as the central goal of the teaching and learn-
ing of mathematics for the majority. This was a
reaction to the progressivism of the previous
decade, most clearly defined in the aims of the
Industrial Trainers group mentioned below, and
became an important plank of the traditionalist
position on the mathematics curriculum.

The early 1980s led to a further entrenchment
in the progressive/traditional controversy. In the
USA the influential National Council of Teachers
of Mathematics (NCTM) recommended that
“Problem solving must be the focus of school
mathematics in the 1980s” (1980, pp. 2–4). In
the UK the Cockcroft Inquiry (1982)
recommended problem solving and investiga-
tional work be included in mathematics for all
students. Thus the debate remained at the level
of pedagogy but shifted to problem solving.

The progressivist versus traditionalist debate
was born anew in the late 1980s (UK) and the
1990s (USA) but now encompassed the whole
mathematics curriculum on a national basis.
Analytical Framework

The British government developed and installed
the first legally binding National Curriculum in
1988 for all students age 5–16 years in all state
schools (excluding Scotland). The debate over the
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mathematics part of National Curriculum in
became a heated contest between different social
interest groups. Ernest (1991) analyzed this as a
contest between five different groups with differ-
ent broad ranging ideologies of education, the
aims, and orientation of which are summarized
in Table 1 (In the full treatment there are 14 differ-
ent ideological components for each of these
5 groups).

These different social groups were engaged in
a struggle for control over the National Curricu-
lum in mathematics, since the late 1980s (Brown
1996). In brief, the outcome of this contest was
that the first three more reactionary groups man-
aged to win a place for their aims in the curricu-
lum. The fourth group (progressive educators)
reconciled themselves with the inclusion of a per-
sonal knowledge-application dimension, namely,
the processes of “Using and Applying mathemat-
ics,” constituting one of the National Curriculum
assessment targets. However instead of
representing progressive self-realization through
creativity aims through mathematics, this compo-
nent embodies utilitarian aims: the practical skills
of being able to apply mathematics to solve work-
related problems with mathematics. Despite this
concession over the nature of the process element
included in the curriculum, the scope of the ele-
ment has been reduced over successive revisions
that have occurred in the subsequent 20 years and
Policy Debates in Mathematics Education, Table 1 Fiv
(Based on Ernest 1991)

Interest group Social location O

1. Industrial
trainers

Radical New Right conservative
politicians and petty bourgeois

A
ba
ce

2. Technological
pragmatists

Meritocratic industry-centered
industrialists, managers, etc.,
New Labor

In
w

3. Old Humanist
mathematicians

Conservative mathematicians
preserving rigor of proof and
purity of mathematics

Pu
m
ce

4. Progressive
educators

Professionals, liberal educators,
welfare state supporters

Ch
pr

5. Public
educators

Democratic socialists and radical
reformers concerned with social
justice and inequality

Em
an
ju
co
has largely been eliminated. The fifth group, the
public educators, found their aims played no part
in the National Curriculum. The outcome of the
process is a largely utilitarian mathematics curric-
ulum developing general or specialist mathemat-
ics skills and capabilities, which are either
decontextualized – equipping the learner with
useful tools – or which are applied to practical
problems. The contest between the interest groups
was an ideological one, concerning not only all
four aspects of curriculum but also about deeper
epistemological theories on the nature of mathe-
matics and the nature of learning.

During the period following the introduction of
the National Curriculum in mathematics, pressure
from various groups continued to be exerted to
shift the emphasis of the curriculum. Mathemati-
cians who can often be characterized as belonging
to the Old Humanist grouping published a report
entitled Tackling the Mathematics Problem
(London Mathematical Society 1995), commis-
sioned by professional mathematical organiza-
tions. This criticized the inclusion of “time-
consuming activities (investigations, problem
solving, data surveys, etc.)” at the expense of
“core” technique and technical fluency. Further-
more, it claimed many of these activities are
poorly focused and can obscure the underlying
mathematics. This criticism parallels that heard
in the “math wars” debate in the USA.
e interest groups and their aims for mathematics teaching.

rientation Mathematical aims

uthoritarian,
sic skills
ntered

Acquiring basic mathematical skills and
numeracy and social training in
obedience

dustry and
ork centered

Learning basic skills and learning to
solve practical problems with
mathematics and information technology

re
athematics
ntered

Understanding and capability in
advanced mathematics, with some
appreciation of mathematics

ild-centered
ogressivist

Gaining confidence, creativity, and self-
expression through maths

powerment
d social
stice
ncerns

Empowerment of learners as critical and
mathematically literate citizens in society
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“Math Wars”

In the USA the National Council of Teachers of
Mathematics (NCTM) published its so-called Stan-
dards document in 1989 recommending a
“Reform”-based (progressive) mathematics curricu-
lum for the whole country. This emphasized prob-
lem solving and constructivist learning theory. The
latter is not just discovery learning under a new
name because constructivists acknowledge that
learners need to be presented with representations
of existing mathematical knowledge to reconstruct
them for themselves. This initiated the savage debate
in the USA called the Math Wars (Klein 2007).

The Standards influenced a generation of new
mathematics textbooks in the 1990s, often funded
by the National Science Foundation. Although
widely praised by mathematics educators, partic-
ularly in California, concerned parents formed
grassroots organizations to object and to pressure
schools to use other textbooks. Reform texts were
criticized for diminished content and lack of atten-
tion to basic skills and an emphasis on progressive
pedagogy based on constructivist learning theory.
Critics in the debate derided mathematics pro-
grams as “dumbed-down” and described the
genre as “fuzzy math.”

In 1997 Senator Robert Byrd joined the debate by
making searing criticisms of the mathematics educa-
tion reformmovement from theSenatefloor focusing
on the inclusion of political and social justice dimen-
sions in one mathematics textbook. In the spreading
and increasingly polarized debate, the issues spread
from traditional versus progressive content and ped-
agogy to left versus right political orientations and
traditional objectivist versus constructivist (relativist)
epistemology and philosophy of mathematics. This
way the debate took on aspects of the parallel “sci-
ence wars” also taking place, primarily in the USA.
This is the heated debate between scientific realists,
who argued that objective scientific knowledge is
real and true, and sociologists of science. The latter
questioned scientific objectivity and argued that all
knowledge is socially constructed. This is an insolu-
ble epistemological dispute that has persisted at least
since the time of Socrates in philosophical debates
between skeptics and dogmatists. Nevertheless, it
fanned the flames of the Math Wars debate.
In 1999 the US Department of Education
released a report designating 10 mathematics pro-
grams as “exemplary” or “promising.” Several of
the programs had been singled out for criticism by
mathematicians and parents. Almost immediately
an open letter to Secretary of Education Richard
Riley was published calling on him to withdraw
these recommendations. Over 200 university
mathematicians signed their names to this letter
and included seven Nobel laureates and winners
of the Fields Medal. This letter was repeatedly
used by traditionalists in the debate to criticize
Reform mathematics, and in 2004 NCTM Presi-
dent Johnny Lott posted a strongly worded denun-
ciation of the letter on the NCTM website.

In 2006, President Bush was stirred into action
by the heated controversy and created the National
Mathematics Advisory Panel to examine and sum-
marize the scientific evidence related to the teach-
ing and learning of mathematics. In their 2008
report, they concluded that recommendations that
instruction should be entirely “student centered” or
“teacher directed” are not supported by research.
High-quality research, they claimed, does not sup-
port the exclusive use of either approach. The
Panel called for an end to the Math Wars, although
its recommendations were still the subject of criti-
cism, especially from within the mathematics edu-
cation community for its comparison of extreme
forms of teaching and for the criteria used to deter-
mine “high-quality” research.
Defusing the Debates

Policy debates have raged over the mathematics
curriculum throughout the past 50 years. They
have been strongest in the USA and UK but
have occurred elsewhere in the world as well. In
Norway, for example, there is a much more muted
but still heated debate as to whether mathematics
or the child should be the central focus of the
curriculum. Proponents of a child-centered curric-
ulum promote general pedagogy in teacher edu-
cation as opposed to a specifically mathematics
pedagogy with its associated emphasis on
teachers’ pedagogical content knowledge in
mathematics.
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The spread of policy debates has also become
much wider following the impact of international
assessment projects such as TIMSS. Politicians
sometimes blame what is perceived to be poor
national performance levels in mathematics on
one or other aspect of the curriculum. Unfortu-
nately policy debates too often become politicized
and drift away from the central issues of deter-
mining the best mathematics curriculum for stu-
dents. In becoming polarized, the debates become
controversies that propel policy swings from one
extreme to the other, like a pendulum. Ernest
(1989) noted this pattern, but regrettably the
pendulum-like swings from one extreme position
to the opposite continue unabated to this day.

The fruitlessness of swings from traditional to
progressive pedagogy in mathematics is illus-
trated in an exemplary piece of research by
Askew et al. (1997). This project studied the belief
sets and teaching practices of primary school
teachers and their correlation with students’
numeracy scores over a period of 6 months.
Three belief sets and approaches to teaching
numeracy were identified in the teachers:

1. Connectionist beliefs: valuing students’
methods and teaching with emphasis on
establishing connections in mathematics
(mathematics and learner centered)

2. Transmission beliefs: primacy of teaching and
view of maths as collection of separate routines
and procedures (traditionalist)

3. Discovery beliefs: primacy of learning and
view of mathematics as being discovered by
students (progressivist)

The classes of teachers with a connectionist
orientation made the greatest gains, so teaching
for connectedness were measurably the most
effective methods. This included attending to
and valuing students’methods as well as teaching
with an emphasis on establishing connections in
mathematics. Traditional transmission beliefs and
practices were not shown to be as effective. Like-
wise, discovery beliefs and practices were equally
ineffective, refuting the progressivist claim that
the teaching and learning of mathematics by dis-
covery is the most effective approach. Of course
Askew et al. (1997) only report a small-scale,
in-depth study of about 20 teachers and must be
viewed with caution and needs replication. Nev-
ertheless its results illustrate the futility of policy
debates becoming overly ideological and losing
contact with empirical measures of effectiveness
from properly conducted research.
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Definition

Apolitical perspective inmathematics education is a
way of looking at how mathematics, education, and
society relate to power. It stands on the critical
recognition that mathematics is not only important
in society due to its exceptional, intrinsic character-
istics as the purest and most powerful form of
abstract thinking but also and foremost, because of
its functionality in the constitution of the dominant
cultural project of Modernity. Thus, it assumes that
the teaching and learning of mathematics are not
neutral practices but that they insert people – be it
children, youth, teachers, and adults – in socially
valued mathematical rationalities and forms of
knowing. Such insertion is part of larger processes
of selection of people that schooling operates in
society. It results in differential positioning of inclu-
sion or exclusion of learners in relation to access to
socially privileged resources such as further educa-
tion, labor market, and cultural goods.
History

The political perspectives of mathematics educa-
tion became a concern for teachers and
researchers in the 1980s. While the change from
the nineteenth to the twentieth centuries was a
time of inclusion of mathematics in growing,
massive, national education systems around the
world, the change from the twentieth to the
twenty-first centuries has been a time for focusing
on the justifications for the privileged role of
mathematics in educational systems at all levels.
The apparent failure of the New Math movement
in different industrialized countries allowed to
raise concerns about the need for mathematics
teaching and learning that could reach as many
students as possible and not only a selected few
(Damerow et al. 1984). Questions of how mathe-
matics education could be studied from perspec-
tives that allowed moving beyond the boundaries
of the mathematical contents in the school curric-
ulum started to be raised. In mathematics educa-
tion, the first book published in English as part of
an international collection, containing the word
politics in the title, was The politics of mathemat-
ics education by StiegMellin-Olsen (1987). How-
ever, The mastery of reason: Cognitive
development and the production of rationality by
Valerie Walkerdine (1988) is a seminal work in
critical psychology discussing how school math-
ematics education subjectifies children through
inscribing in them and in society, in general, spe-
cific notions of the rational child and of abstract
thinking.

The political concern and involvement of many
mathematics educators in their teaching and
research practice was also an initial entry that allo-
wed sensitivity and awareness for searching how
mathematics education could be “political”
(Lerman 2000). Such political awareness on issues
such as how mathematics has played a role as
gatekeeper to entry in further education, for exam-
ple, has been important. However, a political
“awareness” does not constitute the center of a
political approach since there is a distinction
between being sympathetic to how mathematics
education relates to political processes of different
type and making power in mathematics education
the focus of one’s research. In other words, not all
people who express a political sympathy actually
study the political in mathematics education
(Gutierrez 2013; Valero 2004).
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With this central distinction in mind, it is pos-
sible to differentiate a variety of political perspec-
tives, some that could be called weak in the sense
that they make a connection between mathematics
education and power but do not concentrate on the
study of it as a constituent of mathematics educa-
tion but rather as a result or a simply associated
factor. Strong political approaches in mathematics
education are a variety of perspectives that do
have a central interest in understanding mathemat-
ics education as political practices.
Weak Political Perspectives

A general characteristic of weak political perspec-
tives in mathematics education is the adherence to
some of the positive features attributed to mathe-
matics and mathematics education, particularly
those that have to do with people’s empowerment
and social and economic progress. More often
than not, these views assume some kind of intrin-
sic goodness of mathematics and mathematics
education that is transferred to teachers and
learners alike through good and appropriate edu-
cation practices. In the decade of the 1980s and
fully in the 1990s, the broadening of views on
what constitutes mathematics education allowed
for formulations of the aims of school mathemat-
ics in relation to the response to social challenges
of changing societies and, in particular, in
response to the consolidation of democracy. It
was possible to enunciate the idea that, as part of
a global policy of “Education for all” by
UNESCO, mathematics education had to contrib-
ute to the competence of citizens, but also to open
access for all students. In many countries, both at
national policy level and at the level of researchers
and teachers, there was a growing concern for
mathematics for all and mathematics for equity
and inclusion. Since the 2000s, the growing
emphasis given to mathematical achievement as
an indicator of economic growth among interna-
tional, competitive economies has reinforced the
idea of the power of mathematical competence to
improve citizens’ life chances and national eco-
nomic progress. The study of how different
groups – women, language, ethnic or religious
minorities, and particular racial groups – of stu-
dents systematically underachieve and how to
remediate that situation grew extensively. While
this type of studies emerged mainly in English-
speaking countries, there is a growing tendency to
see mathematical underachievement as a national
and international concern and therefore many
studies are being carried out in different countries
to generate inclusion of different types of students
in and through mathematics education. The
impact of international comparative assessments
such as TIMMS and PISA are connected to this
trend.

Part of the weak political approaches also
includes studies of how mathematics education
practices are shaped by educational policies.
South Africa, given the transition from apartheid
to democracy at the beginning of the 1990s, has
been a particularly interesting national case where
deep changes of policy had been studied to see
how and why mathematics education in primary
and secondary school is transforming to
contribute – or not – to the construction of a new
society. Since the 2000s the concern with inclu-
sion as a way of facing systematic low perfor-
mance in mathematics has promoted
government-promoted large-scale pedagogical
interventions as well as small-scale pedagogical
innovations. Many of these studies have a weak
political approach in the sense that they are justi-
fied and operate on some political assumptions on
mathematics education and its role in society, but
intend to study appropriate pedagogies and not
how pedagogies in themselves effect the exclu-
sion that the programs intend to remediate.
Strong Political Perspectives

Strong political perspectives in mathematics edu-
cation problematize the assumed neutrality of
mathematical knowledge and provide new inter-
pretations of mathematics education as practices
of power. Ethnomathematics can be read as a
political perspective in mathematics education in
its challenge to the supremacy of Eurocentric
understandings of mathematics and mathematical
practices. The strong political perspectives of
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ethnomathematics are presented in studies that not
only argue for how the mathematical practices of
different cultural groups – not only indigenous or
ethnic groups but also professional groups – are of
epistemological importance and value but also
how some of those cultural practices are inserted
in the calculations of power so that they can con-
struct a regime of truth around themselves and
thus gain a privileged positioning in front of
other practices (Knijnik 2012).

Critical mathematics education as a wide and
varied political approach takes the study of
power in relation to how mathematics is a for-
matting power in society through its immersion
in the creation of scientific and technological
structures that operate in society (Christensen
et al. 2008). It also studies the processes of exclu-
sion and differentiation of students when mathe-
matics education practices reproduce the position
of class and disadvantage of students
(Frankenstein 1995), and when such reproduc-
tion is part of the way (school) mathematics is
given meaning in public discourses and popular
culture (Appelbaum 1995). It also offers possi-
bilities for rethinking practices when democracy
is thought as a central element of mathematics
education (Skovsmose and Valero 2008).

The study of the political in relation to the
alignment of mathematics education practices
with Capitalism is also a recent and strong polit-
ical reading of mathematics education that offers a
critical perspective on the material, economic sig-
nificance of having success in mathematics edu-
cation. Both educational practices (Baldino and
Cabral 2006) and research practices (Lundin
2012; Pais 2012) lock students in a credit system
where success in mathematics represents value.

In the USA, and as a reaction to endemic
operation of race as a strong element in the clas-
sification of people’s access to cultural and eco-
nomic resources, the recontextualization of
critical race theories into mathematics education
has provided new understandings of mathematics
education as a particular instance of a White-
dominant cultural space that operates exclusion
from educational success for African American
learners (Martin 2011), as well as for Latino(a)s
(Gutiérrez 2012).
The recontextualization of poststructural the-
ories in mathematics education has also led to the
study of power in relation to the historical con-
struction of Modern subjectivities. The effects of
power in the bodies and minds of students and
teachers (Walshaw 2010), as well as in the public
and media discourses on mathematics (Moreau
et al. 2010), are studied in an attempt to provide
insights into how the mathematical rationality
that is at the core of different technologies in
society shapes the meeting between individuals
and their culture. Even though most research
concentrates on the issue of identity construction
and subjectivity, some studies attempting cul-
tural histories of mathematics as part of Modern,
massive educational systems are also broadening
this type of political perspective (Popkewitz
2004; Valero et al. 2012).
Recent Overviews

As the mathematical qualification of the popula-
tion is seen in the 2010s as a matter of economic
development, weak and strong political perspec-
tives in mathematics education become solidly
rooted in society. A growing number of studies
continue to explore the contexts in which mathe-
matics education is understood in relation to
power in contemporary societies. Recent over-
views (Jurdak et al. 2016) offer a landscape of
the issues and preoccupations addressed when
adopting political perspectives in mathematics
education.
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Definition

Approaches that draw on developments within
wider scholarly work that conceives of modernist
thought as limiting.
Characteristics

Poststructuralist and psychoanalytic approaches
capture the shifts in scholarly thought that gained
currency in Western cultures during the past
50 years. Conveying a critical and self-reflective
attitude, both raise questions about the appropri-
ateness of modernist thinking for understanding
the contemporary social and cultural world. Since
the publication of Lyotard’s The Postmodern
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Condition (translated into English in 1984), post-
structuralist and psychoanalytic thinking have
provided an expression within the social sciences
and humanities and, more recently, within mathe-
matics education, for a loss of faith in the “grand
narratives” of Western history and, in particular,
enlightened modernity. A diverse set of initiatives
in social and philosophical thought, originating
from the work of Michel Foucault (e.g., 1970),
Jacques Derrida (e.g., 1976), Julia Kristeva (e.g.,
1984), and Jacques Lacan (1977), among others,
helped crystallize poststructuralist and psychoan-
alytic ideas among researchers and scholars
within mathematics education about how things
might be thought and done differently.

Poststructuralist and psychoanalytic
approaches provide alternatives to the traditions
of psychological and sociological thought that
have grounded understandings about knowledge,
representation, and subjectivity within mathemat-
ics education. These traditions understand reality
as characterized by an objective structure,
accessed through reason. More specifically, the
traditions are based on the understanding that
reason can provide an authoritative, objective,
true, and universal foundation of knowledge.
They also assume the transparency of language.
Epistemological assumptions like these, about the
relationship between the knower and the known,
are accompanied by beliefs about the kind of
being the human is. Typically, the related ontol-
ogies are dualist in nature. They include such
dichotomies as rational/irrational, objective/sub-
jective, mind/body, cognition/affect, and univer-
sal/particular. Taken together, these
characteristically modernist beliefs about ontol-
ogy and epistemology have informed theories of
human interaction, teaching, learning, and devel-
opment within mathematics education.

Developments within psychology and sociol-
ogy that began to question these understandings
paved the way for a different perspective. Sociol-
ogy has helped seed poststructuralist work that
aims to draw attention to the ways in which
power works within mathematics education, at
any level, and within any relationship, to consti-
tute identities and to shape proficiencies. Psychol-
ogy has informed a psychoanalytical turn,
designed to unsettle fundamental assumptions
concerning identity formations. Postmodernists
and psychoanalysts share some fundamental
assumptions about the nature of the reality being
studied, assumptions about what constitutes
knowledge of that reality, and assumptions about
what are appropriate ways of building knowledge
of that reality.

Researchers in mathematics education who
draw on this body of work have an underlying
interest in understanding, explaining, and analyz-
ing the practices and processes within mathemat-
ics education. Their analyses chart teaching and
learning, and the way in which identities and pro-
ficiencies evolve; tracking reflections; investigat-
ing everyday classroom planning, activities, and
tools; analyzing discussions with principals,
mathematics teachers, students, and educators;
mapping out the effects of policy, and so forth.
In the process of deconstructing taken-for-granted
understandings, they reveal how identities are
constructed within discourses, they demonstrate
how everyday decisions are shaped by disposi-
tions formed through prior events, and they pro-
vide insights about the way in which language
produces meanings and how it positions people
in relations of power. The assumptions upon
which these analyses are based enable an explo-
ration of the lived contradictions of mathematics
processes and structures.

These analyses are developed around a number
of key organizing principles: language is fragile
and problematic and constitutes rather than
reflects an already given reality. Meaning is not
absolute in relation to a referent, as had been
proposed by structuralism. The notion of knowing
as an outcome of human consciousness and inter-
pretation, as described by phenomenology, is also
rejected. Moreover, knowing is not an outcome of
different interpretations, as claimed by hermeneu-
tics. Instead, for poststructuralist and psychoana-
lytic scholars, reality is in a constant process of
construction. What is warranted at one moment of
time may be unwarranted at another time. The
claim is that because the construction process is
ongoing, no one has access to an independent
reality. There is no “view from nowhere,” no
conceptual space not already implicated in that
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which it seeks to interpret. There is no stable
unchanging world and no realm of objective truths
to which anyone has access. The notion of a
disembodied autonomous subject with agency to
choose what kind of individual he or she might
become also comes under scrutiny. The counter-
notion proposed is a “decentered” self – a self that
is an effect of discourse which is open to redefi-
nition and which is constantly in process.
Poststructuralist Approaches

Foucault’s work is considered by many to repre-
sent a paradigmatic example of poststructuralist
thought. His work raises critical concerns about
how certain practices, and not others, become
intelligible and accepted, and how identities are
constructed. Foucauldian analyses centered
within mathematics educational sites explore
lived experience, not in the sense of capturing
reality and proclaiming causes but of understand-
ing the complex and changing processes by which
subjectivities and knowledge production are
shaped. In that sense, the focus shifts from exam-
ining the nature of identity and knowledge to a
focus on how identity and knowledge are discur-
sively produced. In these analyses, “discourse” is
a key concept. Discourses sketch out, for teachers,
students, and others, ways of being in the class-
room and within other institutions of mathematics
education. They do that by systematically consti-
tuting specific versions of the social and natural
worlds for them, all the while obscuring other
possibilities from their vision. Discursivity is not
simply a way of organizing what people say and
do; it is also a way of organizing actual people and
their systems. It follows that “truths” about math-
ematics education emerge through the operation
of discursive systems.

Discursive approaches within mathematics
education draw attention to the impact of regula-
tory practices and discursive technologies on the
constructions of teachers, students, and others. It
reveals the contradictory realities of teachers, stu-
dents, policy makers, and so forth and the com-
plexity and complicity of their work. Such work
emphasizes that teachers and students are the
production of the practices through which they
become subjected (e.g., Hardy 2009; Lerman
2009).

Power in these approaches envelopes every-
one. What the analyses reveal is that, in addition
to operating at the macro-level of the school,
power seeps through lower levels of practice
such as within teacher/student relations and
school/teacher relations (see Walshaw 2010).
Even in a classroom environment that provides
equitable and inclusive pedagogical arrange-
ments, poststructural approaches have shown
that power is ever present through the classroom
social structure, systematically creating ways of
being and thinking in relation to class, gender, and
ethnicity and a range of other social categories
(see Walshaw 2001; Mendick 2006; Knijnik
2012).

In illuminating the impact of regulatory prac-
tices and technologies on identity and knowledge
production, fine-grained readings of classroom
interaction have revealed the regulatory power of
teachers’ discourse in providing students with
differential access to mathematics (de Freitas
2010). Such readings shed light on how the dis-
cursive practices of teachers contribute to the kind
of mathematical thinking and the kind of mathe-
matical identities that are possible within the
classroom.
Psychoanalytic Approaches

Psychoanalytic analyses in mathematics educa-
tion explore the question of identity. Lacan’s
(e.g., 1977) and Žižek’s (e.g., 1998) explanations
of how identities are constructed through an
understanding of how others see that person
have been influential in revealing that teachers,
students, and others are not masters of their own
thoughts, speech, or actions. Žižek’s psychoana-
lytic position is that the self is not a center of
coherent experience: “there are no identities as
such. There are just identifications with particular
ways of making sense of the world that shape that
person’s sense of his self and his actions” (Brown
and McNamara 2011, p. 26). A person’s identifi-
cations are not reducible to the identities that the
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person constructs of himself. Rather, the self is
performedwithin the ambivalent yet simultaneous
relationship of subjection/agency.

Psychoanalytic observations of identity forma-
tion are likely to reveal how identities develop
through discourses and networks of power that
shift continually in a very unstable fashion,
changing as alliances are formed and reformed.
When identities are formed in a very mobile
space, what emerge are fragmented selves, layers
of self-understandings, and multiple positionings
within given contexts and time (see Hanley 2010).
This psychoanalytic idea is fundamental to under-
standing that teachers and students (among
others) negotiate their way through layered mean-
ings and contesting perceptions of what a “good”
teacher or student looks like. To complete a nego-
tiation, there is a level at which the teacher or
student invests, or otherwise, in a discursive posi-
tion made available (see Bibby 2009).

A teacher’s, for example, investments within one
discourse rather than another is explained through
the notion of affect and, more especially, through the
notions of obligation and reciprocity. Affect, in the
psychoanalytic analysis, is not a derivative aspect but
a constitutive quality of classroom life (seeWalshaw
and Brown 2012). It is not an interior experience, but
rather, it operates through processes that are historical
in a way that is not entirely rational nor observable.
Researchers in mathematics education who draw on
psychoanalytic theory maintain that determinations
exist outside of our consciousness and, in the peda-
gogical relation, for example, influence the way
teachers develop a sense of self as teacher and influ-
ence their interactions in the classroom. The identi-
ties teachers have of themselves are, in a very real
sense, “comprised,” made in and through the activ-
ities, desires, interests, and investments of others.
Understandings like these invite unknowingness,
fluidity, and becoming,which, in turn, have the effect
of producing different knowledge.
Emancipatory Possibilities

Although both poststructuralist and psychoanalytic
theorists question the modernist concept of enlight-
enment, in reconceptualizing emancipation away
from individualist sensibilities, they highlight pos-
sibilities for where and in what ways mathematics
educational practices might be changed (see
Radford 2012). In addition to uncovering terrains
of struggle, poststructuralist and psychoanalytic
analyses foster democratic provision, enabling a
vision of critical-ethical teaching where different
material and political conditions might prevail.
What is clarified in these approaches is that dis-
courses are not entirely closed systems but are
vehicles for reflecting on where mathematics edu-
cation is today, how it has come to be this way, and
the consequences of conventional thought and
actions. Importantly, such analyses are a political
resource for transforming the processes and struc-
tures that currently deny teachers, students, policy
makers, and others the achievement of their ethical
goals within mathematics education.
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Introduction

University mathematics teachers are the people
who teach mathematics in a university to mathe-
matics undergraduates, students in science or
engineering, business or economics, and in foun-
dation programs where these exist. They may be
research mathematicians or mathematics educa-
tors, or mathematics teachers who do not engage
in research.

In the following sections, the needs for and
means of developing professionally for both prac-
ticing and prospective teachers are discussed:
some as part of university professional develop-
ment programs, others as part of research studies
or teaching initiatives providing new learning and
development opportunities.
What Is Included in Preparation and
Professional Development?

A critical review of teaching at university level
suggested that “many academics have had little or
no formal teacher education to prepare them for
the teaching role” (Kane et al. 2002). Oleson and
Hora (2014) recognize that forms of teaching in
Higher Education are recycled by successive gen-
erations of teachers despite changes in curriculum
or student population. Where mathematics educa-
tion is concerned, Nardi et al. (2005) pointed out:
“Teachers of university mathematics courses, on
the whole, have not been trained in pedagogy and
do not often consider pedagogical issues beyond
the determination of syllabus; few have been pro-
vided with incentives or encouragement to seek
out the findings of research in mathematics edu-
cation” (p. 284). A recent survey of research
(Winsløw et al. (2018) has recognized a scarcity
of research into university teachers’ pedagogical
knowledge and its development through formal-
ized education), stating that “organised, deliberate
development of UME teachers, based on RUME,
is still rare” (p. 70).

The need for development is clearly urgent
when we consider the changing nature of the
student population. More students are going to
university than ever before, from a wide range of



Preparation and Professional Development of University Mathematics Teachers 671
backgrounds, many of whom are likely not to
have had prior mathematics teaching that enables
them to tackle the more abstract and formal modes
of thinking required in university mathematics
(Nardi 2008; Hawkes and Savage 2000). Teachers
have to acknowledge that large audience lectures
in early university courses (see▶ “Teaching Prac-
tices at University Level”), and the amount of
material which is presented in a typical university
course (see ▶ “University Mathematics Educa-
tion”) create problems for students. In addition,
the so-called “service teaching,” for students of
science, engineering, economics, and so on, needs
alternative teaching practices related to the needs
and interests of these students (see ▶ “Service-
Courses in University Mathematics Education”).
P

University Provision for Both New and
Experienced Teachers of Mathematics

Despite these evident limitations, we see also an
increasing awareness of the importance of prepa-
ration and PD for all those involved in teaching
mathematics at university level. A very recent
example was seen at the INDRUM II
(International Network for Didactic Research in
University Mathematics) conference, held in
April 2018, where a plenary panel focused on
the Education and Professional Development of
University Mathematics Teachers. Contributors
from Germany, Norway, the UK, and the USA
focused on professional development provision
in their national settings (Winslow et al. 2019).
While only four countries were represented, the
characteristics emerging and issues identified
seemed relevant to a wider constituency. For
example, the US participant claimed that, “In the
US, there is no universal professional develop-
ment for university mathematics professors
related to the professional activity of teaching.”
The same was acknowledged as true in the other
countries. Typically, universities organize their
own PD programs for their own staff. In Germany,
one university program consisted of three general
modules (not specific to mathematics) of
70 hours’ workload (Basic, Expansion, and
Advanced) focusing on elements of didactics,
pedagogy, self-image, and student-support for
postdocs and “young” professors. The situation
in both Norway and the UK is similar, except that
“training” is often for new university teachers (not
postdocs). The Norwegian participant suggested
that his university’s PD program is “too general –
[there is] a need for more subject specific content.”

In Norway, this is being addressed through a
new initiative for the preparation of mathematics
teachers, organized by the Norwegian National
Centre for Teaching Excellence (MatRIC). The
elements are: Topics: Innovative approaches to
teaching, learning and assessing mathematics,
and relevant research results; a Course project:
in which each participant chooses an area of
her/his teaching/supervision/presentation activ-
ity that she/he would like to develop; a Profes-
sional portfolio: a structured and organized
collection of a range of documentary evidence
of professional experiences. Based on this, and
satisfactory attendance, a certificate of participa-
tion is provided.

In the UK, the government has instituted
a Teaching Excellence Framework (TEF)
(https://www.officeforstudents.org.uk/advice-and-
guidance/teaching/what-is-the-tef/) which mea-
sures teaching excellence across a university in
three key areas: Teaching Quality, Learning Envi-
ronment and Student Outcomes. These are general
areas not related to a specific subject. Universities
may opt in to being evaluated on the framework;
one of three levels Gold, Silver, and Bronze is
subsequently awarded.

In the USA, there are three national, research-
based professional development opportunities:

• Project NEXT – a professional development
program organized by theMathematical Associ-
ation of America (MAA) for new or recent PhDs
in the mathematical sciences (https://www.maa.
org/programs-and-communities/professional-
development/project-next)

• Inquiry-Based Learning – centralized through
the Academy of Inquiry-Based Learning and
funded by the US National Science Foundation
(http://www.inquirybasedlearning.org/).

• Project TIMES – Teaching Inquiry-Oriented
Mathematics: Establishing Supports (TIMES)

https://doi.org/10.1007/978-3-030-15789-0_100028
https://doi.org/10.1007/978-3-030-15789-0_100028
https://doi.org/10.1007/978-3-030-15789-0_100020
https://doi.org/10.1007/978-3-030-15789-0_100020
https://doi.org/10.1007/978-3-030-15789-0_100025
https://doi.org/10.1007/978-3-030-15789-0_100025
https://www.officeforstudents.org.uk/advice-and-guidance/teaching/what-is-the-tef/
https://www.officeforstudents.org.uk/advice-and-guidance/teaching/what-is-the-tef/
https://www.maa.org/programs-and-communities/professional-development/project-next
https://www.maa.org/programs-and-communities/professional-development/project-next
https://www.maa.org/programs-and-communities/professional-development/project-next
http://www.inquirybasedlearning.org/
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is funded by the US National Science Founda-
tion (http://times.math.vt.edu).

From these examples, it can be seen that much of
the existing PD is general and provided by individ-
ual universities, in some cases in relation to a
national framework. In addition, there are specific
programs, developed through national agencies and
focusing specifically on aspects of mathematics in
higher education. These programs are provided for
new teachers or for graduate students/postdocs who
wish to gain teaching expertise.

In addition to such programs, we see below
further contributions to teacher learning and
teaching development.
Learning from Research and Scholarship
in Mathematics Education

A number of books are emerging addressing the
needs of teachers of mathematics at the university
level. The ICMI study into The Teaching and
Learning of Mathematics at University Level
points to a range of perceptions about established
mathematics teaching and associated teacher
beliefs that impede student learning (Holton
2000). In the study volume, Alsina (2001) sugges-
ts “a new paradigm of teaching mathematics at
university level” to address context, historical
backgrounds, modelling processes, innovative
technological tools, pedagogical strategies in
mathematics education at the university level
(pp. 7–9). These aspirations raise questions
about how teachers’ beliefs become challenged
and practices develop to encompass new possibil-
ities for practice. Other chapters take up these
issues.

A book specially written to bring research
findings in mathematics education to the attention
of university teachers of mathematics addresses
specific topics in undergraduate mathematics
(e.g., limits and convergence), relating them to
research findings on student understanding in
advanced mathematics (Alcock and Simpson
2009). An expectation is that mathematicians
become more aware of how mathematical topics
can be made more accessible to students.
A book written to address a wide range of
issues for university teachers of mathematics set
out to chart Transitions in Undergraduate Math-
ematics Education (Grove et al. 2015). The chap-
ters include discussions on problem solving and
modelling, group work, lecturing, neurodiversity,
transition to abstraction in mathematics, gender,
and employability. Here teachers of mathematics
gain access to range of pedagogies they can
develop to improve the student experience.
Teachers’ Learning through
Engagement in Research and
Development Projects

Research into practices in teaching and learning
mathematics at university level can have a develop-
mental outcome. Where teachers engage as respon-
dents or participants, they correspondingly learn and
develop their teaching overtly or implicitly. A short
review of research into university teaching practices
pointed to the value for practitioners of research into
their practice promoting deeper reflections and
potential teaching development (Jaworski et al.
2017). Examples of more overtly developmental
studies can be seen in three cases in which
researchers and teachers jointly sought to learn
about or to develop practice. A project in Denmark
studied relationships between research and teaching
in mathematics and in geography in which partici-
pating teachers gained insights for their own teach-
ing (Madsen and Winslow 2008). The SYMBoL
project (Second Year Mathematics Beyond Lec-
tures) in the UK set out to provide resources for
courses in which students had been performing at a
low level (Duah et al. 2014; Duah 2017). Former
students of the courses worked with teachers to
design resources to improve conceptual understand-
ing of future students. Through collaboration, stu-
dents and teachers together learned about the needs
of teaching and the design of resources, and teachers
gained insights to student perspectives. The third
study, a partnership between a mathematician and
two mathematics educators to study the teaching of
linear algebra, resulted in developing awareness and
practice of the teacher whose teaching was observed
(Treffert-Thomas 2015).

http://times.math.vt.edu
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Innovation in Teaching

Research is starting to be seen into innovative
practices in teaching mathematics. A particular
kind of collaborative research project explores
the integration of new approaches into teaching,
or some overt kind of intervention. For example,
the ESUM project (Engineering Students Under-
standing Mathematics) in the UK was designed to
improve teaching of mathematics to first year
engineering students through a fourfold interven-
tion: use of inquiry-based questions, small group
problem solving, a computer-based learning envi-
ronment, and an assessed group project (Jaworski
et al. 2012). The project revealed issues relating to
innovation and insights into students’ perceptions
of learning and teaching, both of which influenced
future practice.

A project in France studied university teachers’
interaction with resources, including digital
resources, as well as the teachers’ communication
with each other and their students (Gueudet et al.
2014). These studies, characterizing and theoriz-
ing teaching with resources, reported significant
influences on teachers’ developing knowledge
and practices.
P

Professional Development Activity
Influencing Practice

Initiatives are starting to become more visible
in which university teachers of mathematics
explore ways in which they can develop their
own teaching locally and report on outcomes. In
New Zealand, the DATUM project (Development
and Analysis of Teaching in Undergraduate Math-
ematics), including both mathematicians and
mathematics education researchers, began as a
longitudinal project to develop a model for pro-
fessional development, theoretically grounded in
Schoenfeld’s (2010) resources, orientations, and
goals (ROG) model of teacher action. Each mem-
ber of the group had one of their lectures recorded
and selected a short (3- to 4-min) segment for
discussion, along with a brief written reflection
of their ROGs. Participants were encouraged to
reflect on their teaching episodes, to stimulate
discussion of both mathematical and pedagogical
knowledge and thereby develop their practice
organically. The study has had an enduring impact
on teaching practice (Barton et al. 2014).

In the UK, a professional development initia-
tive called the How we Teach project consisted of
a set of seminars in each of which a mathematics
teacher (mathematician or mathematics educator)
presented an account of some chosen aspect of
their teaching which was then discussed with col-
leagues. Seminars were video-recorded to act as a
source for others to view and analyzed to discern
perspectives and issues relating to teaching and its
development. The seminars were built into a uni-
versity course on teaching development as an
optional study for new lecturers in mathematics
(Jaworski and Matthews 2011).

In a survey of research on learning and teach-
ing mathematics at the tertiary level, Biza et al.
(2016) report on an increasing interest by tertiary
teachers in non-lecture pedagogies. They refer to
Hayward et al. (2015) in the USA, who report on
the impact on their teaching practice of a series of
annual, weeklong PD workshops for college
mathematics teachers on Inquiry-Based Learning
(IBL) in undergraduate mathematics. Fifty-eight
percentage of the teachers reported implementing
IBL strategies in the year following the workshop
they attended (p. 5). Biza et al. (ibid.) refer to a
study of five exemplary calculus programs at US
institutions in which the program had substantive,
well-structured GTA (Graduate Teaching Assis-
tant) training (Rasmussen et al. 2014).
Mathematics Support

In relation to acknowledged student difficulties
with university mathematics, a network has devel-
oped over 15–20 years of providing support in
mathematics for university students. This network
for Mathematics Learning Support, referred to as
Sigma (http://sigma-network.ac.uk/), has devel-
oped in the UK and is branching to several other
countries in Europe. Support is provided one-to-
one by university lecturers or GTAs who have
been trained through a series of workshops
covering for example methods of teaching

http://sigma-network.ac.uk/
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for understanding, listening, explaining and
questioning skills; individual student needs and
differences. Nonmathematics skills such as
counselling and empathy, dealing with mathemat-
ics anxiety and mental blocks is also included
(Croft and Grove 2016; Solomon et al. 2010).
Conclusion

It is clear that much of what is reported above
consists of specific activity and initiatives in
known and reported areas. While this is encour-
aging in so far as it addresses the reported limita-
tions, it is yet piecemeal and lacks more
widespread and coherent directions internation-
ally. It is also the case that possibly many more
examples exist, not yet in the public domain, and
that an international survey would be beneficial.
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Definition

In the field of mathematics education, probabilis-
tic thinking, statistical thinking, and probabilistic
and statistical thinking are umbrella terms. Often
the terms are accompanied with related terms,
such as reasoning, understanding, conceptions,
teaching, learning, and literacy. For example, the
phrase statistical thinking, reasoning, and literacy
is widely adopted in statistics education. Ulti-
mately, the terms are used to identify research
and practice associated with topics such as
randomness, likelihood, data, chance, uncertainty,
and risk. Although probability and statistics are
inextricably linked, the same cannot be said for
research regarding probabilistic and statistical
thinking in the fields of probability and statistics
education.
Probabilistic and Statistical Thinking

Formally or informally, attempts at investigating
whether or not human beings are innate probabi-
lists and/or statisticians, by and large, cement the
popular notion that humans are not necessarily
adept when it comes to probabilistic and statistical
thinking. Certain illustrations have even achieved
legendary status. In the early 1990s, for example,
Marilyn vos Savant invited readers of her column
“Ask Marilyn?,” found in Parade Magazine, to
submit their responses to The Monty Hall Prob-
lem (which she called the Game Show Problem).
An entire book has been written about what hap-
pened next and the problem itself. Nearly 25 years
later, Numberphile, which popularizes mathemat-
ics in video form, produced a video entitled
Monty Hall Problem. Views of this video reached
millions, but views of the problem have not
changed since the 1990s. Further fortifying our
arguable ineptitude with probability and statistics,
experts (as they are so called) do not fare any
better. Medical doctors, lawyers, teachers, and
the like, too, have difficulty with basic and com-
plex probabilistic and statistical thinking (see,
e.g., the many articles and videos dedicated to
scientists’ attempts to explain, simply, p-values).
Even those individuals at the top of their respec-
tive fields have demonstrated difficulty with prob-
abilistic and statistical thinking (see, e.g., Paul
Erdos’ dislike for the correct solution to The
Monty Hall Problem and Martin Gardner’s argu-
able mistake with The Two Child Problem). With
both experts and otherwise demonstrating diffi-
culties with probabilistic and statistical thinking,
much research, in a variety of fields, has been
conducted.

Research in fields other than mathematics edu-
cation (e.g., cognitive psychology) has demon-
strated that merely asserting probability and

https://hal.archives-ouvertes.fr/hal-01849922/document
https://hal.archives-ouvertes.fr/hal-01849922/document
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statistics as counterintuitive only scratches the
surface of what takes place during our efforts to
navigate the world probabilistically and statisti-
cally. Similar research has been and is being
conducted in the field of mathematics education.
When combined with the recent adoption of prob-
ability and statistics in mathematics curricula
worldwide, it appears that a field interested in
the teaching and learning of probability and sta-
tistics and probabilistic and statistical thinking,
such as the fields of probability and statistics
education, is uniquely positioned to continue to
investigate probabilistic and statistical thinking.
Probabilistic Thinking in Probability
Education

As is the case with statistical thinking, the term
probabilistic thinking is often accompanied with
further descriptors when used in the field of prob-
ability education. Dominant terms common in the
research literature include probabilistic thinking
and teaching and learning probability. Lesser
used terms such as reasoning, understanding,
and conceptions are utilized and are often com-
bined with alternative descriptors associated with
probability such as uncertainty, data, chance, ran-
domness, and likelihood. Unlike statistics educa-
tion the term probability education has yet to be as
deeply adopted by its respective field. Certain
publications – for example, the special journal
issue Research and Development in Probability
Education (Borovcnik and Kapadia 2009) and the
book Teaching and Learning Stochastics:
Advances in Probability Education Research
(Batanero and Chernoff 2018) – have started to
embrace the term. However, the phrases probabi-
listic thinking and teaching and learning proba-
bility are still associated with recent projects, such
as the book Probabilistic Thinking: Presenting
Plural Perspectives (Chernoff and Sriraman
2014), in the field.

The field of probability education has been
(and is) shaped by outside influences. In particu-
lar, research from the field of psychology has
played a foundational role for research investigat-
ing probabilistic thinking in mathematics
education. As Jones and Thornton (2005) detail
in their overview of research into the teaching and
learning of probability, “the initial research in the
field was undertaken during the 1950s and 1960s
by Piaget and Inhelder and by psychologists with
varying theoretical orientations” (p. 66). The
influence of psychologists was to such an extent
that, when looking back, Jones and Thornton
denoted the first chronological period of probabil-
ity education research, the 1950s and 1960s, as the
Piagetian Period, a period dominated by the work
of Piaget and Inhelder (1975) that, to no surprise,
focused on stages of development but, in doing so,
revealed insights into children’s thinking regard-
ing intuition, sample space, the law of large num-
bers, randomization, and other probabilistic
notions. The second phase, too, would be domi-
nated by psychologists.

As Jones and Thornton continued with their
overview, they noted that the second phase “was
a period of prolific research on the probabilistic
thinking of children and adults” (2005, p. 70). The
second phase of research, denoted the Post-
Piagetian Period, taking place in the 1970s and
1980s, was again ruled by psychologists: in par-
ticular, Efraim Fischbein’s research on probabilis-
tic intuitions and Amos Tversky and Daniel
Kahneman’s research on heuristics and biases.
Fischbein’s (1975) research distinguishing
between primary intuitions and secondary intui-
tions would become foundational to further
research in probability education. Probabilistic
intuitions were also at the core of the heuristics
and biases program of Tversky and Kahneman
(e.g., Kahneman et al. 1982). Their heuristic prin-
ciples, “which reduce the complex tasks of
assessing probabilities and predicting values to
simple judgmental operations” (Tversky and
Kahneman 1974, p. 1124), would help lay the
foundation for a “burgeoning growth of studies
by mathematics educators” (Jones and Thornton
2005) investigating the probabilistic thinking and
the teaching and learning of probability.

The field, while transitioning from the Post-
Piagetian Period to the Contemporary Period,
witnessed many changes. For example, mathe-
matics educators, as opposed to psychologists, as
was the case in the past, began to utilize research
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from the field of psychology in their own research.
This shift is evidenced in the research of
Shaughnessy (1977, 1981) that aimed to look at
the influence of teaching on Tversky and
Kahneman’s heuristics principles (in particular
the representativeness heuristic) and is also
evidenced by mathematics educators such Konold
(1989) and LeCoutre (1992) contributing their
own heuristics, the outcome approach and the
equiprobability bias, respectively, to the research
literature. Change, at this time, was also occurring
in terms of the volume of research into probabi-
listic thinking that was being conducted. Instead
of drawing on the foundational studies from a few
individuals (e.g., Piaget and Inhelder, Fischbein,
and Tversky and Kahneman), the close of the
second phase of research resulted in reviews of
existing literature (e.g., Hawkins and Kapadia
1984). Alternatively stated, it was getting harder
and harder to keep a handle on the growing num-
ber of studies investigating probabilistic thinking.

The Contemporary Period, which took place
during the 1990s and 2000s, coincided with prob-
ability and statistics being adopted as a major
strand of various mathematics curriculum, which
resulted in “accelerated research activity into the
teaching and learning of probability” (Jones and
Thornton 2005, p. 79). Influenced by probability
and statistics having gone to school, probability
education research focused on curricula itself
(e.g., when and why to introduce particular phil-
osophical interpretations of probability), varying
aged students (e.g., elementary school, middle
school, high school, tertiary, and others), and dif-
ferent teaching and learning environments (e.g.,
the use of computers and simulations). In addi-
tion, research in varying probabilistic topics
flourished and resulted in various threads of
research in probability education. Perceptions of
randomness (e.g., Batanero and Serrano 1999;
Bennett 1998; Falk and Konold 1997), for exam-
ple, now an established area of investigation in the
field of probability education, burgeoned in the
Contemporary Period. Worthy of note, in 2005,
Jones and Thornton then argued that it was “pre-
mature” (p. 83) for them to historically evaluate
the significance of research in the Contemporary
Period. With hindsight, however, it would appear
that the 1990s and 2000s would lay the foundation
for various, particular threads of research in prob-
ability education (e.g., simulation, theoretical
frameworks, intuition, and many others). The
variety of the probability education publications
published in this period also speaks to the field
coming into its own.

Naturally, major publications regarding proba-
bility education existed prior to (and after) the
Contemporary Period. For example, the National
Council of Teachers of Mathematics (NCTM)
dedicated their 1981 Yearbook to Teaching Statis-
tics and Probability (Shulte and Smart 1981). The
1990s and 2000s saw publication of three major
edited books: Kapadia and Borovcnik’s (1991)
Chance Encounters: Probability in Education;
Jones’ (2005) Exploring Probability in School:
Challenges for Teaching and Learning; and
Burrill and Elliott’s (2006) editing of the 68th
Yearbook of the NCTM entitled Thinking and
Reasoning with Data and Chance. Beyond edited
books, the topic of probability became a staple of
various handbooks of mathematics education. For
example, Borovcnik and Peard’s probability chap-
ter appeared in the (1996) International Hand-
book of Mathematics Education, Shaughnessy’s
chapter on probability and statistics in the (1992)
Handbook of Research on Mathematics Teaching
and Learning, and Jones, Langrall, and Mooney’s
probability chapter in the (2007) Second Hand-
book of Research on Mathematics Teaching and
Learning. The close of the Contemporary Period
would also bear witness to a special journal issue
of the International Electronic Journal of Mathe-
matics Education, edited by Borovcnik and
Kapadia (2009), which would continue the work
of the probability study group that occurred at the
11th International Congress on Mathematical
Education by capturing “Research and Develop-
ments in Probability Education.” This notion, that
is, subsequently turning conference activity into
edited books and special journal issues, would
continue into the next period of research and,
concurrently.

While, self-admittedly, it was a tad premature
for Chernoff and Sriraman (2014) to attempt to
name the period following the Contemporary
Period, the manner in which they recognized
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particular research threads has shed some light on
current and future research directions during the
last (roughly) 10 years of probability education.
They make reference to an attempt at a “unified
approach to the teaching and learning of the clas-
sical, frequentist and subjective interpretations of
probability” (p. xvii), which has been a call from
various researchers for years (see, e.g., Hawkins
and Kapadia 1984). Among the three dominant
interpretations of probability, they note the issues
inherent to the varying uses and meanings of the
term “subjective probability” that remain in the
literature. They foreshadow potential emergence
of the topic of risk (e.g., Chernoff 2015; Prat et al.
2011) and recognize not only a renewed interest in
the genericized notion of Tverksy and
Kahneman’s heuristics and biases program (e.g.,
Gilovich et al. 2002; Kahneman 2011) but also the
emergence of the research of Gerd Gigerenzer
(e.g., Gigerenzer et al. 1999). Ultimately, though,
they settled on the Assimilation Period.

Denoting, while in the midst of, the next period
of research in probability education, Chernoff and
Sriraman (2014), it would appear, hedged their
bet. Instead of picking and choosing a particular
research thread to represent the period, they took a
look at the general trend of probability education
research. They noticed, as was the case in the
Contemporary Period, that earlier trends associ-
ated with the field showed no signs of slowing
down, but rather were increasing in volume and
pace. They considered the increase of articles
published in major mathematics education
research journals. Also, probability specific con-
ference activity at major mathematics education
conferences (e.g., Working Groups and Topic
Study Groups); and resultant special journal
issues (Biehler and Pratt 2012 and Chernoff
et al. 2016), and authored (Batanero et al. 2016;
Batanero and Borovcnik 2016) and edited
(Batanero and Chernoff 2018) books. The contin-
uation of probability as a staple of research hand-
books in education and mathematics education
was also considered. Taken all together, Chernoff
and Sriraman suggested that the field of probabil-
ity education was becoming (further) assimilated
into the field of mathematics education. Once the
purview of psychologists and a handful of
pioneering mathematics educators, probability
education, as a field, now has all the markings of
becoming a full-fledged content area in the field of
mathematics education.
Statistical Thinking in Statistics
Education

Unlike probability education, the term statistics
education is deeply adopted within in the field
(e.g., International Association of Statistical Edu-
cation, Statistics Education Research Journal,
Journal of Statistics Education, and others). Sta-
tistical thinking, though, is still accompanied with
various terms such as understanding, learning,
reasoning, teaching (and literacy). Chapter titles
in the International Handbook of Research in
Statistics Education, by way of example, have
been entitled “Research on Statistics Learning
and Reasoning” (Shaughnessy 2007). Thus, vari-
ations of statistical thinking/learning/reasoning/
understanding/literacy are used as terms to help
encapsulate research on statistical thinking in sta-
tistics education. (As will be presented, statistics
education phraseology is more specifically used
than in probability education.)

Compared to what is becoming known as prob-
ability education, the field of statistics education
has been around for the same period of time,
roughly, and has similar academic roots in the
work of Piaget and Inhelder and Kahneman and
Tversky. This, however, is where similarities end.
The field of statistics education distinguishes itself
from probability education. For example, in a
chapter in the International Handbook of Research
in Statistics Education, one that addresses what
statistics education is, Zieffler, Garfield, and Fry
comment: “Before we begin, we note that although
probability plays an important role in statistics
education, we will rarely refer to it in this chapter.
We made this decision in part because we view
probability as a separate discipline from statistics
and only a single component of statistics education,
not its entirety” (2018, p. 37). There are other
differentiations for the field.

The field of statistics education distinguishes
itself in terms of statistics (as opposed to mathe-
matics) and its relation to mathematics education.
As Moore (1998) notes, “statistical thinking is a
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general, fundamental, and independent mode of
reasoning about data, variation, and chance”
(p. 1257). Parsing the notions of statistics, statis-
tics education, and statistics education research in
the (first three chapters of the) first major section
of the International Handbook of Research in
Statistics Education supports assertions, found
earlier in the said handbook, regarding “this new
discipline that has come of age” (Ben-Zvi et al.
2018, p. xix). This “new subject” (Cobb 2018,
p. v), one that is “grounded in science” (ibid),
this “new science of statistics education” (ibid),
when examined in terms of rather standard mea-
sures, does appear to have distinguished itself
from other fields.

The International Association for Statistical
Education (IASE), officially constituted as the
education section of the International Statistical
Institute (ISI), identifies itself as the international
umbrella organization for statistics education.
Through publications (e.g., Statistics Education
Research Journal), conferences (e.g., Interna-
tional Conference On Teaching Statistics,
ICOTS), and other avenues, the IASE looks to
enhance statistics education across the globe.
With all the markers of an independent field of
study (e.g., an international association, interna-
tional conferences, research journals), one that is
coming of age (e.g., International Handbook of
Research in Statistics Education), there is a bevy
of research in the field despite it being relatively
young.

Petocz et al. (2018) denote statistics education
research as “the world of research that pertain
[s] to the teaching, learning, understanding, and
using of statistics and probability in diverse con-
texts, both formal and informal” (p. 71). Within
this world of research into statistical thinking,
there are agreed-upon big ideas and particular
delineations. According to Shaughnessy (2007),
the big ideas include understanding of centers and
average, variability (in data, from data and sam-
ples, and from samples to distributions, with for-
mal and informal inference), information garnered
from samples, comparison of data sets, graph
sense, and technology (see, e.g., the research of
Hollylynne Stohl Lee, Rolf Biehler, Dave Pratt,
Janet Ainley, and others). (It should be pointed out
that research into the aforementioned topics is
conducted, predominantly, with students, but
investigations with teachers continue to grow as
an area.) These big ideas are echoed in seven
themes related to learning and understanding sta-
tistics as identified by Pfannkuch and delMas
(2018): “practice of statistics, research on data,
research on uncertainty, introducing children to
modeling variability, learning about statistical
inference, statistics learning trajectories, and
research on statistics teachers’ cognitive and
affective characteristics” (p. 101). In a broader
sense, as demonstrated in Ben-Zvi and Garfield
(2004), statistics education research is delineated
according to models and research frameworks
from the field, which results in the major threads
of statistical literacy (e.g., Gal 2002), statistical
thinking (e.g., Wild and Pfannkuch 1999), and
statistical reasoning. Whether examined in terms
or topics (e.g., centers) or threads (e.g., statistical
literacy), there is dominant underlying current to
all statistics education research.
The Data Deluge

There are signs that our world is coming to,
whether it wants to or not, fully embrace proba-
bility and statistics. For example, the amount of
data the world generates is ever and more rapidly
increasing. Continuing advances to technology
continually increase the computing prowess sit-
ting in our pockets. The (loosely defined) job of
data scientist is consistently ranked as one of the
best jobs to procure in many countries. And cer-
tain individuals (e.g., Hans Rosling, Nate Silver,
Sir David Spiegelhalter, Daniel Kahneman,
Arthur Benjamin, Andrew Gelman, and others)
have achieved the stochastic equivalent to rock
star status in popular culture. Alternatively pre-
sented, those who are able to adeptly navigate the
data deluge are gaining a unique status within a
world shifting its attention to data, chance, and
uncertainty. Should certain trends continue, there
will be a time where it behooves everyone to be
adept at navigating this new world, which brings
us back to the dominant underlying current to
statistics education research. “Perhaps the over-
arching goal of statistics education is to enable
students (of any age) to read, analyze, critique,
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and make inferences from distributions of data”
(Shaughnessy 2007, p. 968). Signs that our
schools are coming to fully embrace probability
and statistics are starting to emerge.
Supplantation

The teaching and learning of mathematics is under
attack. Public denunciations of school mathemat-
ics, for example, have been published in The
New York Times (Andrew Hacker 2012), the
Wall Street Journal (E. O. Wilson 2013), and
Harper’s Magazine (Nicholson Baker 2013).
These public condemnations of the necessity of
the teaching and learning of mathematics are
nothing new. As detailed by Baker, openly
questioning various aspects of the teaching and
learning of mathematics (e.g., algebra) has
occurred since the 1900s (e.g., William
McAndrew). In the past, those who dare critique
the teaching and learning of mathematics have
been met with ostracism. This time, however, the
situation appears slightly different.

As mentioned, we are in a data deluge. And,
yes, change in education is not easy. And, yes,
change in education is not quick. But in a world
embracing data, chance, and uncertainty, probabi-
listic thinking and statistical literacy, reasoning,
and thinking are becoming ever important. Stu-
dents, with hundreds of other classmates, are still
packing themselves into first year lecture halls all
around the world. However, instead of coming to
gain a grasp of first and second derivatives, stu-
dents are coming to learn about quantitative rea-
soning, data analysis, and this new amazing job
they heard of called data scientist.

Opportunities, then, to teach students (of any
age) the big ideas of probabilistic and statistical
thinking (e.g., data, center, variability, sampling,
models) and to help them reason, understand, and
think, about data, uncertainty, variability, and sta-
tistical inference, must be embraced–embraced
not just by those in probability education, not
just by those in statistics education, but also by
those involved in mathematics education.

Calculus, for now, is perilously perched atop
Mount School-Mathematics. But as probability
and statistics move further into the mainstream
and probability and statistics education moves
further into the mainstream of mathematics edu-
cation research, further denunciations of school
mathematics may not be met with ostracism;
rather they may play a pivotal role in probability
and statistics education gaining prominence in
elementary, secondary, and tertiary classrooms
around the world and in the mathematics educa-
tion research community. At the very least, the
tired folklore that probability and statistics only
gets taught in math class after everything else
(e.g., trig, algebra, etc.) has been covered, time
permitting of course, can finally be put to rest.
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Different Meanings of Probability

While the meaning of a typical mathematical
object or operation (rectangles, division, etc.) is
clear and not subject to interpretation, probability
has received different meanings along history that
still today are challenged. Although there are no
contradictions in the probability calculus per se,
different philosophical theories and the emerging
conceptions of probability still persist, among
which the most relevant for teaching are the clas-
sical, frequentist, subjectivist, and axiomatic or
formal conceptions (Batanero et al. 2005) that
we briefly analyze below.

Probability reveals a dual character since its
emergence: a statistical side was concerned with
finding the objective mathematical rules behind
sequences of outcomes generated by random pro-
cesses through data and experiments, while
another epistemic side views probability as a per-
sonal degree of belief (Hacking 1975).

Progress in probability was linked to games of
chance; it is not surprising that the pioneer inter-
pretation was based on an assumption of
equiprobability for all possible elementary events,
an assumption which is reasonable in such games
as throwing dice. In the classical definition, given
by Abraham de Moivre in 1718 in the Doctrine of
Chances and later refined by Laplace in 1814 in
his Philosophical essay on probability, probabil-
ity is simply a fraction of the number of favorable
cases to a particular event divided by the number
of all cases possible in that experiment. This def-
inition was criticized since its publication since
the assumption of equiprobability of the outcomes
is based on subjective judgment, and it restricts
the application from the broad variety of natural
phenomena to games of chance.
In his endeavor to extend the scope of proba-
bility to insurance and life-table problems, Jacob
Bernoulli justified to assign probabilities to events
through a frequentist estimate by elaborating the
Law of Large Numbers. In the frequentist
approach sustained later by von Mises or Renyi,
probability is defined as the hypothetical number
towards which the relative frequency tends. Such
a convergence had been observed in many natural
phenomena so that the frequentist approach
extended the range of applications enormously.
A practical drawback of this conception is that
we never get the exact value of probability; its
estimation varies from one repetition of the exper-
iments (called sample) to another. Moreover, this
approach is not appropriate if it is not possible to
repeat the experiment under exactly the same
conditions.

While in the classical and in the frequentist
approaches probability is an “objective” value
we assign to each event, the Bayes’s theorem,
published in 1763, proved that the probability
for a hypothetical event or cause could be revised
in light of new available data. Following this
interpretation, some mathematicians like Keynes,
Ramsey, or de Finetti considered probability as a
personal degree of belief that depends on a per-
son’s knowledge or experience. Bayes’ theorem
shows that an initial (prior) distribution about an
unknown probability changes by relative frequen-
cies into a posterior distribution. Consequently,
from data one can derive an interval so that the
unknown probability lies within its boundaries
with a predefined (high) probability. This is
another proof that relative frequencies converge
and justifies using data to estimate unknown prob-
abilities. However, the status of the prior distribu-
tion in this approach was criticized as subjective,
even if the impact of the prior diminishes by
objective data, and de Finetti proposed a system
of axioms to justify this view in 1937.

Despite the fierce discussion on the founda-
tions, progress of probability in all sciences and
sectors of life was enormous. Throughout the
twentieth century, different mathematicians tried
to formalize the mathematical theory of probabil-
ity. Following Borel’s work on set and measure
theory, Kolmogorov, who corroborated the
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frequentist view, derived in 1933 an
axiomatic. This axiomatic was accepted by the
different probability schools because with some
compromise the mathematics of probability
(no matter the classical, frequentist or subjectivist
view) may be encoded by Kolmogorov’s theory;
the interpretation would differ according to the
school one adheres to. However, the discussion
about the meanings of probability and the long
history of paradoxes is still alive in intuitions of
people who often conflict with the mathematical
rules of probability (Borovcnik et al. 1991).
P

Probability in the School Curriculum

Students are surrounded by uncertainty in eco-
nomic, meteorological, biological, and political
settings and in their social activities such as
games or sports. The ubiquity of randomness
implies the student’s need to understand random
phenomena in order to make adequate decisions
when confronted with uncertainty; this need has
been recognized by educational authorities by
including probability in the curricula from primary
education to high school and at university level.

The philosophical controversy about the mean-
ing of probability has also influenced teaching
(Henry 1997). Before 1970, the classical view of
probability based on combinatorial calculus dom-
inated the school curriculum, an approach that
was difficult, since students have problems to
find the adequate combinatorial operations to
solve probability problems. In the “modern math-
ematics” era, probability was used to illustrate the
axiomatic method; however this approach was
more suitable to justify theories than to solve
problems. Both approaches hide the multitude of
applications since the equiprobability assumption
is restricted to games of chance. Consistently,
many school teachers considered probability as a
subsidiary part of mathematics, and either they
taught it in this style or they left it out of class.
Moreover, students hardly were able to apply
probability in out-of-school contexts.

With increasing importance of statistics at
school and progress of technologywith easy access
to simulation, today there is a growing interest in
an experimental introduction of probability as a
limit of stabilized frequencies (frequentist
approach). We also observe a shift in the way
probability is taught from a formula-based
approach to a modern experiential introduction
where the emphasis is on probabilistic experience.
Students (even young children) are encouraged to
perform random experiments or simulations, for-
mulate questions or predictions about the tendency
of outcomes in a series of these experiments, col-
lect and analyze data to test their conjectures, and
justify their conclusions on the basis of these data.
This approach tries to show the students that prob-
ability is inseparable from statistics, and vice versa,
as it is recognized in the curriculum.

Simulation and experiments can help students
face their probability misconceptions by extending
their experience with randomness. It is important,
however, to clarify the distinction between ideally
repeated situations and one-off decisions, which
are also frequent or perceived as such by people.
By exaggerating simulation and a frequentist inter-
pretation in teaching, students may be confused
about their differences or return to private concep-
tions in their decision making.

Moreover, a pure experimental approach is not
sufficient in teaching probability. Though simula-
tion is vital to improve students’ probabilistic
intuitions and in materialize probabilistic prob-
lems, it does not provide the key about how and
why the problems are solved. This justification
depends on the hypotheses and on the theoretical
probability model on which the computer simula-
tion is built, so that a genuine knowledge of prob-
ability can only be achieved through the study of
some probability theory. However, the acquisition
of such formal knowledge by students should be
gradual and supported by experience with random
experiments, given the complementary nature of
the classic and frequentist approaches to probabil-
ity. It is also important to amend these objective
views with the subjectivist perspective of proba-
bility which is closer to how people think, but is
hardly taken into account in the current curricula
in spite of its increasing use in applications and
that it may help to overcome many paradoxes,
especially those linked to conditional probabilities
(Borovcnik 2011).



684 Probability Teaching and Learning
When organizing the teaching of probability,
there is moreover a need to decide what content to
include at different educational levels. Heitele
(1975) suggested a list of fundamental probabilis-
tic concepts, which can be studied at various
degrees of formalization, each of which increases
in cognitive and linguistic complexity as one pro-
ceeds through school to university. These con-
cepts played a key role in the history and form
the base for the modern theory of probability
while at the same time people frequently hold
incorrect intuitions about their meaning or their
application in absence of instruction. The list of
fundamental concepts include the ideas of random
experiment and sample space, addition and mul-
tiplication rules, independence and conditional
probability, random variable and distribution,
combinations and permutations, convergence,
sampling, and simulation.

All these ideas appear along the curriculum,
although, of course, with different levels of for-
malization. In primary school, an intuitive idea of
probability and the ability to compute simple
probabilities by applying the Laplace rule or via
the estimation from relative frequencies using a
simple notation seems sufficient. By the end of
high school, students are expected to discriminate
random and deterministic experiments, use com-
binatorial counting principles to describe the sam-
ple space and compute the associate probabilities
in simple and compound experiments, understand
conditional probability and independence, com-
pute and interpret the expected value of discrete
random variables, understand how to draw infer-
ences about a population from random samples,
and use simulations to acquire an intuitive mean-
ing of convergence.

It is believed today that in order to become a
probability literate citizen, a student should under-
stand the use of probability in decision making
(e.g., stock market or medical diagnosis) or in
sampling and voting. In scientific or professional
work, or at university, a more complex meaning of
probability including knowledge of main proba-
bility distributions and even the central limit the-
orem seems appropriate.
Intuitions and Misconceptions

For teaching, it is important to take into account
informal ideas that people relate to chance and
probability before instruction. These ideas appear
in children who acquire experience of randomness
when playing chance games or by observing nat-
ural phenomena such as the weather. They use
qualitative notions (probable, unlikely, feasible,
etc.) to express their degrees of belief in the occur-
rence of random events in these settings; however
their ideas are too imprecise. Young children may
not see stable properties in random generators
such as dice or marbles in urns and believe that
such generators have a mind of their own or are
controlled by outside forces.

Although older children may realize the need
of assigning numbers (probabilities) to events to
compare their likelihood, probabilistic reasoning
rarely develops spontaneously without instruction
(Fischbein 1975), and intuitions are often found to
be wrong even in adults. For example, the math-
ematical result that a run of four consecutive heads
in coin tossing has no influence on the probability
that the following toss will result in heads seems
counterintuitive. This belief maybe due to the
confusion between hypotheses and data: when
we deal with coin tossing, we usually assume
that the experiment is performed independently.
In spite of the run of four heads observed, the
model still is used and, then, the probability for
the next outcome remains half for heads; however
intuitively these data prompt people to abandon
the assumption of independence and use the pat-
tern of past data to predict the next outcome.

Piaget and Inhelder (1951) investigated chil-
dren’s understanding of chance and probability
and described stages in the development of prob-
abilistic reasoning. They predicted a mature com-
prehension of probability at the formal operational
stage (around 15 years of age), which comprises
that adolescents understand the law of large
numbers – the principle that explains simulta-
neously the global regularity and the particular
variability of each randomly generated distribu-
tion. However, later research contradicted some of
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their results; Green’s (1989) investigation with
2930 children indicates that the percentage of
students recognizing random distributions
decreases with age.

Moreover, research in Psychology has shown
that adults tend to make erroneous judgments in
their decisions in out-of-school settings even if
they are experienced in probability. The well-
known studies by Kahneman and his collaborators
(see Kahneman et al. 1982) identify that people
violate normative rules behind scientific inference
and use specific heuristics to simplify the uncertain
decision situation. According to them, such heuris-
tics reduce the complexity of these probability
tasks and are in general useful; however, under
specific circumstances, heuristics cause systematic
errors and are resistant to change.

For example, in the representativeness heuris-
tics, people estimate the likelihood of an event
taking only into account how well it represents
some aspects of the parent population neglecting
any other information available, no matter how
relevant it is for the particular decision. People
following this reasoning might believe that small
samples should reflect the population distribution
and consistently rely too much on them. In case of
discrepancies between sample and population,
they might even predict next outcomes to
reestablish the alleged similarity. Other people
do not understand the purpose of probabilistic
methods, where it is not possible to predict an
outcome with certainty but the behavior of the
whole distribution, contrary to what some people
expect intuitively. A detailed survey of students’
intuitions, strategies, and learning at different ages
may be found in the different chapters of Jones
(2005) and in Jones et al. (2007).

Another fact complicates the teaching of prob-
ability (Borovcnik and Peard 1996): whereas in
other branches of mathematics counterintuitive
results are encountered only at higher levels of
abstraction, in probability counterintuitive results
abound even with basic concepts such as indepen-
dence or conditional probability. Furthermore,
while in logical reasoning – the usual method in
mathematics – a proposition is true or false, a
proposition about a random event would only be
true or false after the experiment has been
performed; beforehand we only can consider the
probability of possible results. This explains that
some probability theorems (e.g., the central limit
theorem) are expressed in terms of probability.
Challenges in Teaching Probability

The preceding philosophical and psychological
debate suggests that teachers require a specific
preparation to assure their competence to teach
probability. Unfortunately, even if prospective
teachers have a major in mathematics, they usually
studied only probability theory and consistently
lack experience in designing investigations or sim-
ulations (Stohl 2005). Theymay be unfamiliar with
different meanings of probability or with frequent
misconceptions in their students. Research in sta-
tistics education has shown that textbooks lack to
provide sufficient support to teachers: they present
an all too narrow view of concepts; applications are
restricted to games of chance; even definitions are
occasionally incorrect or incomplete.

Moreover, teachers need training in pedagogy
related to teaching probability as general principles
valid for other areas of mathematics are not appro-
priate (Batanero et al. 2004). For example, in arith-
metic or geometry elementary operations can be
reversed and reversibility can be represented by
concrete materials: when joining a group of three
marbles with another group of four, a child always
obtains the same result (seven marbles); if separat-
ing the second set from the total, the child always
returns to the original set provided that the marbles
are seen as equivalent (and there is hardly a dispute
on such an abstraction). These experiences are vital
to help children progressively abstract the structure
behind the concrete situation, since they remain
closely linked to concrete situations in their math-
ematical thinking. However, with a random exper-
iment such as flipping a coin, a child obtains
different results each time the experiment is
performed, and the experiment cannot be reversed.
Therefore, it is harder for children to understand
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(and acknowledge) the structure behind the exper-
iments, which may explain why they do not always
develop correct probability conceptions without
instruction.

Our previous discussion also suggests several
important questions to be considered in future
research: How should we take advantage of the
multifaceted nature of probability in organizing
instruction? How to conduct children to gradually
view probability as an a priori degree of uncertainty,
as the value to which relative frequencies tend in
random experiments repeated under the same con-
ditions, and as a personal degree of belief, where
“subjectivist” does not mean arbitrariness, but use of
expert knowledge? How to make older students
realize that probability should be viewed as a math-
ematical model, and not a property of real objects?
And finally, how best to educate teachers to become
competent in the teaching of probability?
Cross-References

▶Data Handling and Statistics Teaching and
Learning
References

Batanero C, Godino JD, Roa R (2004) Training teachers to
teach probability. J Stat Educ 12 [Online]. www.amstat.
org/publications/jse

Batanero C, Henry M, Parzysz B (2005) The nature of
chance and probability. In: Jones G (ed) Exploring
probability in school: challenges for teaching and learn-
ing. Springer, New York, pp 15–37

Borovcnik M (2011) Strengthening the role of probability
within statistics curricula. In: Batanero C, Burrill G,
Reading C (eds) Teaching statistics in school
mathematics – challenges for teaching and teacher edu-
cation. A joint ICMI/IASE study. Springer, New York,
pp 71–83

Borovcnik M, Peard R (1996) Probability. In: Bishop A,
Clements K, Keitel C, Kilpatrick J, Laborde C (eds)
International handbook of mathematics education.
Kluwer, Dordrecht, pp 239–288

Borovcnik M, Bentz HJ, Kapadia R (1991) A probabilistic
perspective. In: Kapadia R, Borovcnik M (eds) Chance
encounters: probability in education. Kluwer, Dor-
drecht, pp 27–73

Fischbein E (1975) The intuitive source of probability
thinking in children. Reidel, Dordrecht
Green DR (1989) Schools students’ understanding of ran-
domness. In: Morris R (ed) Studies in mathematics
education, vol 7., The teaching of statistics. UNESCO,
Paris, pp 27–39

Hacking I (1975) The emergence of probability Cam-
bridge. Cambridge University Press, Cambridge

Heitele D (1975) An epistemological view on fundamental
stochastic ideas. Educ Stud Math 6:187–205

Henry M (1997) L’enseignement des statistiques et des
probabilités [Teaching of statistics and probability].
In: Legrand P (ed) Profession enseignant: Les maths
en collège et en lycée. Hachette-Éducation, Paris,
pp 254–273

Jones GA (ed) (2005) Exploring probability in schools
challenges for teaching and learning. Springer,
New York

Jones G, Langrall C, Mooney E (2007) Research in prob-
ability: responding to classroom realities. In: Lester
F (ed) Second handbook of research on mathematics
teaching and learning. Information Age Publishing and
NCTM, Greenwich

Kahneman D, Slovic P, Tversky A (eds) (1982) Judgement
under uncertainty: heuristics and biases. Cambridge
University Press, New York

Piaget J, Inhelder B (1951) La genése de l’idée de hasard
chez l’enfant [The origin of the idea of chance in
children]. Presses Universitaires de France, Paris

Stohl H (2005) Probability in teacher education and devel-
opment. In: Jones G (ed) Exploring probability in
schools: challenges for teaching and learning. Springer,
New York, pp 345–366
Problem-Solving in
Mathematics Education
Manuel Santos-Trigo
Centre for Research and Advanced Studies,
Mathematics Education Department,
Cinvestav-IPN, Mexico City, Mexico
Keywords
Problem-solving · Frameworks · Digital
technologies · Reasoning · Collaboration ·
Communication · Critical thinking
Introduction

Problem-solving approaches appear in all human
endeavors. In mathematics, activities such as pos-
ing or defining problems and looking for different
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ways to solve them are central to the development
of the discipline. In mathematics education, the
systematic study of what the process of formulat-
ing and solving problems entails and the ways
to structure problem-solving approaches to learn
mathematics has been part of the research agenda
in mathematics education. How have research and
practicing problem-solving approaches changed
and evolved in mathematics education, and what
themes are currently investigated? Two commu-
nities have significantly contributed to the charac-
terization and development of the research and
practicing agenda in mathematical problem-
solving: mathematicians who recognize that the
process of formulating, representing, and solving
problems is essential in the development of math-
ematical knowledge (Polya 1945; Hadamard
1945; Halmos 1980) and mathematics educators
and teachers who are interested in understanding,
explaining, and characterizing problem-solvers’
cognitive, social, and affective processes that
shape their ways to solve problems and to learn
mathematics (Schoenfeld 1985, 1992; Lester and
Kehle 1994, 2003; Lesh and Zawojewski 2007;
English and Gainsburg 2016; Liljedahl and
Santos-Trigo 2019). The analysis of what the
development of mathematics involves and how
individuals’ cognitive and affective behaviors
influence their problem-solving approaches pro-
vides important information for teachers to frame
learning environments that aim to engage students
and users of mathematics in problem-solving
experiences.
Focusing of Problems in the
Development of Mathematics

There are traces of mathematical problem-solving
activities throughout the history of mathematics
and human civilization. Arithmetic and geometric
problems appear in Babylonian clay tablets,
the Greeks’ three classical geometric problems
(squaring the circle, trisecting an angle, and
doubling a cube), and the Hilbert (1902) list of
23 mathematics problems illustrates trends of
the discipline in different times. Devlin (2002)
introduces, to a wide audience, seven
mathematical problems, known as theMillennium
Problems, that were proposed by the Clay Math-
ematics Institute in 2000 and were considered as
the most significant unsolved problems of con-
temporary mathematics.

Mathematical problems address and inform
on themes and contents studied at different
times, and also the attempts to find their solutions
contribute directly to the development of new
areas and solution methods. Making explicit
how mathematicians pose and solve problems
has been also an issue of interest within the math-
ematics community.

Hadamard (1945) published Essay on the
Psychology of Invention in the Mathematics
Field in which he asked 100 physicists and math-
ematicians to describe how they worked and
solved their field problems. As a result, Hadamard
proposed a four-step model that resembles fea-
tures of the Gestalt psychology (Wertheimer
1945) that describes experts’ problem-solving
approaches in terms of four phases: preparation,
incubation, illumination, and verification. Simi-
larly, Polya (1945) wrote on his own experience
to work and do mathematics. Based on retrospec-
tion (looking back at events that already have
taken place) and introspection methods (self-
examination of one’s conscious thought and feel-
ings), he explains what the process of solving
mathematical problems involves. To this end,
he proposed a general framework that describes
four problem-solving stages (understanding the
problem, devising a plan, carrying out the plan,
looking back). Polya recognizes that solving
problems is a practical skill that students develop
or learn by observing and imitating how teachers
or people solve problems and by doing problems
directly. In this process, he suggests that teachers
should ask questions to guide their students
throughout all phases and students should pose
and pursue questions as a means to identify and
activate resources and strategies to solve prob-
lems. Polya also illustrates and discusses the use
and power of several heuristics (analogy, drawing
figures or auxiliary constructions, special cases,
etc.) to represent, explore, and solve different
problems. Polya’s work has been seminal in math-
ematics education and has inspired the design and
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implementation of research programs in mathe-
matical problem-solving. Halmos (1980) pointed
out that mathematics consists of axioms, theo-
rems, proofs, definitions, methods, etc. and all
are essential ingredients; but “what mathematics
really consists of is problems and solutions”
(p. 519).

In mathematical instruction at the university
level, the Moore method (https://en.wikipedia.
org/wiki/Moore_method) to learn advanced
mathematics involves providing students a list
of definitions, theorems, and course problems
that students are asked to understand, explain,
and prove within a learning community that
fosters the members’ participation including the
instructor as a moderator (Halmos 1994). The
mathematics community’s explicit recognition of
the importance of problems in the making and
development of the discipline and its intents to
unveil and explain what solving problems entails
provides foundations to think of ways to study and
foster the students’ process to learn mathematics
as a set of structured problem-solving activities.
Mathematics Education and
Problem-Solving Developments

Research developments in mathematics education
go hand in hand with the conceptual frameworks,
research designs, and methods used to delve into
learners thinking. The most salient feature of
the problem-solving research agenda is that the
themes, questions, and research methods have
changed perceptibly and significantly through
time. Shifts in research themes are intimately
related to shifts in research designs and method-
ologies (Lester and Kehle 2003).

Early problem-solving research relied on quan-
titative methods and statistical hypothesis testing
designs; later, approaches were, and continue to
be, based mostly on qualitative methodologies.
Krutetskii (1976) relied on set of mathematical
tasks to analyze and characterize the mathematical
abilities of gifted children. Krutetskii’ study not
only provides a robust characterization of the
mathematical abilities of these children but also
illustrates ways to elicit their thinking through
the use of a variety of mathematical problems.
The interest in qualitative studies that aim to
examine in detail the process that subjects or
students show in understanding mathematical
knowledge and developing problem-solving com-
petencies led mathematics educators to design and
implement research programs to investigate
teachers/students’ problem-solving behaviors.

Research programs structured around
problem-solving have made significant contribu-
tions to the understanding of the complexity
involved in developing the students’ deep com-
prehension of mathematics ideas, in using
research results in the design and structure of
curricular frameworks, and in directing mathe-
matical school practices.

Schoenfeld (1985) implemented a research
program that focused on analyzing students’
development of mathematical ways of thinking
that reflects a microcosm or features of experts’
mathematical practices. A key issue in his pro-
gram was to characterize what it means to think
mathematically and to document how students
become successful, or develop proficiency in
solving mathematical tasks. He used a set of
nonroutine tasks to engage first year university
students in problem-solving activities that explic-
itly included the implementation of heuristic
strategies in solving the problems. As a result,
Schoenfeld proposed a framework to explain and
document students’ problem-solving behaviors in
terms of four dimensions or categories: the use of
basic mathematical resources or knowledge base,
the use of cognitive or heuristic strategies, the use
of metacognitive or self-monitoring and control
strategies, and students’ beliefs about mathemat-
ics and problem-solving. These categories are
intertwined and shed light on ways to orient
the gradual students’ development of problem-
solving competencies.

Schoenfeld’s framework has been used exten-
sively not only to document the extent to which
problem-solvers succeed or fail in their problem-
solving attempts but also to organize and foster
students’ development of problem-solving expe-
riences in the classrooms. Schoenfeld (1992)
also reported on the strengths and limitations
associated with the use of Polya’s heuristics.

https://en.wikipedia.org/wiki/Moore_method
https://en.wikipedia.org/wiki/Moore_method
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“Polya’s characterization did not provide the
amount of detail that would enable people who
were not already familiar with the strategies to
be able to implement them” (Schoenfeld 1992,
p. 353). That is, students need to work on ways
to identify or break down a general heuristic into a
collection of sub-strategies and analyze their con-
ditions under which they can be applied or used in
different domains (algebra, geometry, calculus,
etc.). Similarly, Perkins and Simmons (1988) pre-
sent a model to characterize what they call deep
understanding of a domain (mathematics, science,
or programming) in terms of four interrelated
frames:

The content frame that includes definitions, facts,
algorithms, rules, or operations associated with
the subject matter and strategies for monitoring
the activation of these elements

The problem-solving frame that refers to the
domain’s problem-solving strategies including
ways to monitor problem-solvers’ own solu-
tion process and beliefs about problem-solving

The epistemic frame that includes ways to reason
and validate domain results

The inquiry frame that involves strategies to
understand and develop domain contents

Schoenfeld (2015) updated his 1985 problem-
solving framework to explain how and why
problem-solvers make decisions that shape and
guide their problem-solving behaviors. He
proposes three constructs to explain in detail
what problem-solvers do on a moment-by-
moment basis while engaging in a problem-
solving approach: the problem-solver’s
resources, goals, and orientations. He suggests
that these constructs offer teachers, and problem-
solvers in other domains, tools for reflecting on
their practicing decisions. Schoenfeld uses this
framework to analyze and predict the behaviors
of mathematics and science teachers and a med-
ical doctor.

A salient feature in these frameworks is the
importance for problem-solvers to engage in
metacognitive behaviors to regulate or monitor
their own process to make decisions and to solve
problems.
Curriculum Proposals and Instruction
The NCTM (1989) launched a curriculum
framework structured around problem-solving
approaches. This framework was updated in
2009 (NCTM 2000, 2009) and conceptualizes a
problem-solving approach as a way of fostering
mathematical reasoning and sensemaking activi-
ties. Throughout the proposal, there are different
examples in which reasoning and sensemaking
activities are interwoven. Phases such as analyz-
ing a problem or concept, implementing a strat-
egy, looking for connections, and reflecting on a
solution are discussed in terms of reasoning habits
(finding key concepts, seeking for patterns, con-
sidering special cases, examining the meaning of
procedures and operations, looking for connec-
tions, interpreting solutions, examining different
problem-solving approaches, generalizing solu-
tions, etc.) that students need to internalize and
practice during the solution process.

Recently, the Common Core State
Mathematics Standards (CCSMS) (2010) also
identified problem-solving as one of the standard
processes to develop students’ mathematical
proficiency. Through all grades, students are
encouraged to engage in problem-solving prac-
tices that involve making sense of problems, and
persevere in solving them, to look for and express
regularity in repeated reasoning, to use appropri-
ate tools strategically, etc. In terms of instruction,
mathematical tasks and ways to discuss them
within the learning environments are important
elements to implement problem-solving activities.

The importance for students to work on non-
routine problems was shown in Selden et al.
(1989) study; they reported that even students,
who had passed their calculus course, experienced
serious difficulties to identify and activate con-
cepts needed to solve the problems. Thus,
problem-solving instruction should foster and
encourage students to work on nonroutine tasks
in which they have an opportunity to always look
for different ways to represent, explore, and solve
mathematical problems and reflect on the extent
to which their solution methods can be applied to
solve other problems (Santos-Trigo 2007).

Some problem-solving approaches rely on pro-
moting scaffolding activities to gradually guide
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students’ construction of problem-solving abilities.
Instructional strategies involve fostering and valuing
students’ small group participation, plenary group
discussions, the instructor presentations through
modeling problem-solving behaviors, and the stu-
dents’ constant mathematical reflection. Lesh and
Zawojewski (2007) identify modeling activities as
essential for students to develop knowledge and
problem-solving experiences. They contend that in
modeling processes, interactive cycles represent
opportunities for learners to constantly reflect on,
revise, and refine tasks’models. Thus, the multiplic-
ity of interpretations of problem-solving has become
part of the identity of the field.
Regional Problem-Solving
Developments and the Use of Digital
Tools

Regional or country mathematics education
traditions also play a significant role in shaping
and pursuing a problem-solving agenda. Artigue
and Houdement (2007) summarized the use of
problem-solving in mathematics education in
France in terms of two influential and prominent
theoretical and practical frameworks in didactic
research: the theory of didactic situations (TDS)
and the anthropological theory of didactics (ATD).
They also pointed out that in the French compul-
sory education, curriculum proposals recognize
solving problems as the source and goal to mathe-
matical learning. In the Netherlands, the problem-
solving approach is associated with the theory of
Realistic Mathematics that pays special attention to
the process involved in modeling the real-world
situations. They also recognized a strong connec-
tion between mathematics as an educational sub-
ject and problem-solving as defined by the PISA
program (Doorman et al. 2007).

Cai and Nie (2007) pointed out that problem-
solving activities in Chinese mathematics educa-
tion have a long history and are viewed as a
goal to achieve and as an instructional approach
supported more on experience than a cognitive
analysis. In the classroom teachers stress
problem-solving situations that involve discus-
sion: one problem multiple solutions, multiple
problems one solution, and one problem multiple
changes. “The purpose of teaching problem solv-
ing in the classroom is to develop students’
problem-solving skills, help them acquire ways
of thinking, form habits of persistence, and build
their confidence in dealing with unfamiliar situa-
tions” (Cai and Nie 2007, p. 471).

Digital Technologies and Mathematical
Problem-Solving
Significant developments and use of digital
technologies, such as smartphones or tablets, are
transforming not only the ways in which people
communicate or interact with others but are also
providing new opportunities for teachers and
students to represent, explore, and solve mathe-
matical problems and to extend mathematical dis-
cussions beyond formal settings (Santos-Trigo
and Reyes-Martínez 2018).

There are mathematical action technologies
that can be used to represent, explore, and work
on mathematical tasks (Dynamic Geometry Sys-
tems (DGS), computational and representational
tools (Wolfram|alpha), MicroWorlds, or computer
simulations) and conveyance technologies (Dick
and Hollebrands 2011) that are useful to explain,
share, and discuss mathematical ideas or problems
(communication applications such as Skype or
FaceTime and presentation technologies such as
Keynote or PowerPoint). There are also online
platforms that include videos to explain mathe-
matical themes, examples of problems and pro-
posed assignments (https://www.khanacademy.
org/coach/dashboard), or online developments
(https://www.wikipedia.org) in which students
can consult information about contents, concepts,
or events. All these technology developments pro-
vide different affordances for teachers and stu-
dents to work on mathematical problems, and
the goal is that students can use them throughout
all their learning experiences.

DGS’ affordances allow teachers and students to
represent or model concepts and mathematical
problems dynamically. Then, within this model,
they can orderly move objects and observe the
behavior of some object attributes and identify
some invariance, patterns, or possible mathematical
relationships among those objects. In terms of the
problem understanding phase, the use of a DGS
provides opportunities for students to pose

https://www.khanacademy.org/coach/dashboard
https://www.khanacademy.org/coach/dashboard
https://www.wikipedia.org
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questions regarding ways to select the tool
affordances for representing or reconstructing con-
cepts or figures that appear in problem statements.
Similarly, during the exploration phase, it becomes
important to quantify object attributes (lengths,
angles, slopes, areas, perimeters, etc.) and visualize
or trace their graphic behaviors. Thus, finding loci
of points or objects that emerge when particular
points are moved within a model and using sliders
to explore particular parameter behaviors are pow-
erful strategies to identify some object mathemati-
cal properties and to solve problems. Likewise,
students can rely on DGS affordances to extend
(by varying values or dimensions of object repre-
sentations) the initial problem domain and explore
generalization of the solution methods. Communi-
cation technologies are also important for teachers
and students to continue or extend mathematical
discussions beyond formal settings. That is, stu-
dents can share their ideas, questions, or comments
via a digital wall (Padlet), and other group peers can
follow the discussion and pose others’ questions.

English and Gainsburg (2016) emphasize the
importance of connecting problem-solving activ-
ities with the demands of modern life and work.
To this end, the coordinated use of digital technol-
ogies opens new paths for people to participate in
development and practice of the four twenty-first-
century key competencies: critical thinking and
problem-solving, communication, collaboration,
and creativity and innovation. Thus, the formula-
tion of problems, finding always different solu-
tions paths, presenting and sharing ideas and
results, and reflecting on ways to apply solution
methods to solve other problems are problem-
solving activities to foster teachers and students’
development of these four competencies.

The systematic use of technology not only
enhances what teachers and students do with the
use of paper and pencil but also extends and opens
new routes and ways of reasoning for students
and teachers to develop mathematics knowledge
(Hoyles and Lagrange 2010; Santos-Trigo and
Reyes-Rodriguez 2016). Thus, emerging reasoning
associated with the use of the tools needs to be
characterized and made explicit in curriculum and
conceptual frameworks in order for teachers to incor-
porate it and to foster its development in teaching
practices.
In terms of curriculum materials and instruc-
tion, the use of several digital technologies could
transform the rigid and often static nature of the
content presentations into a dynamic and flexible
format where learners can access to and rely on
several digital developments (dynamic software,
online encyclopedias, widgets, videos, etc.) dur-
ing their solution of mathematical tasks.

The advent and use of digital technology in
society and education influence and shape the
academic problem-solving agenda. The learners’
tools appropriation to use them in problem-
solving activities involves extending previous
frameworks and to develop different methods to
explain mathematical processes that are now
enhanced with the use of those tools.
Directions for Future Research

In a retrospective account, research in problem-
solving has generated not only interesting ideas and
useful results to frame and discuss paths for students
to develop mathematical knowledge and problem-
solving proficiency; it has also generated ways to
incorporate this approach into the design of curricu-
lum proposals and instructional approaches.

Recent digital developments are shaping and
influencing how people and students deal with
problem-solving activities. Mathematics teacher
education and teachers professional development
programs need to include ways for prospective
and practicing teachers to incorporate the coordi-
nated use of diverse technologies in their teaching
practices. Specifically, they need to analyze and
reflect on what both mathematical action and con-
veyance types of technologies bring to curriculum
contents and students’ problem-solving compe-
tencies and to instruction.

In this context, teachers, together with
researchers, need to be engaged in problem-solving
experienceswhere all have an opportunity to discuss
and design problem-solving activities and ways to
implement and evaluate them in and beyond actual
classroom settings. In addition, there are different
paths for students to developmathematical thinking,
and the use of tools shapes the ways they think of,
represent, and explore mathematical tasks or prob-
lems. Then, theoretical frameworks used to explain
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learners’ construction of mathematical knowledge
need to capture or take into account the different
ways of reasoning that students might develop as a
result of using a set of tools during the learning
experiences. As a consequence, there is a need to
develop or adjust current problem-solving frame-
works to account not only the students processes
of appropriation of the tools but also the need to
characterize the ways of reasoning, including the
use of new heuristics, for example, dragging in
dynamic representations, with which students con-
struct learning as a result of using digital tools in
problem-solving approaches. In addition, it is
important to develop methodological tools to
observe, analyze, and evaluate achievements and
behaviors of problem-solver groups that involve
the use of digital technology.
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Characteristics

During the past decade, professional learning
communities have drawn the attention of educa-
tionists interested in school leadership, school
learning, and teacher development. Professional
learning communities aim to establish school
cultures, which are conducive to ongoing learning
and development, of students, teachers, and
schools as organizations (Stoll et al. 2006). Pro-
fessional learning communities refer to groups of
teachers collaborating to inquire into their teach-
ing practices and their students’ learning with the
aim of improving both. In order to improve prac-
tice and learning, professional learning communi-
ties interrogate their current practices and explore
alternatives in order to refresh and re-invigorate
practice (McLaughlin and Talbert 2008). Explor-
ing alternatives is particularly important in math-
ematics education where a key goal of teacher
development is to support teachers’ orientations
towards understanding and engaging students’
mathematical thinking in order to develop con-
ceptual understandings of mathematics among
students.

A key principle underlying professional learn-
ing communities is that if schools are to be intel-
lectually engaging places, all members of the
school community should be intellectually
engaged in learning on an ongoing basis (Curry
2008). Professional learning communities are
“fundamentally about learning – learning for
pupils as well as learning for teachers, learning
for leaders, and learning for schools” (Katz and
Earl 2010, p. 28). Successful learning communi-
ties are those that challenge their members to
reconsider taken-for-granted assumptions in
order to generate change, for example, challeng-
ing the notion that working through procedures
automatically promotes conceptual understand-
ings of mathematics. At the same time, not all
current practices are problematic, and successful
professional learning communities integrate the
best of current practice with ideas for new
practices.

A number of characteristics of successful pro-
fessional learning communities have been identi-
fied: they create productive relationships through
care, trust, and challenge; they de-privatize prac-
tice and ease the isolation often experienced by
teachers; they foster collaboration,
interdependence, and collective responsibility for
teacher and student learning; and they engage in
rigorous, systematic enquiry on a challenging and
intellectually engaging focus. Professional
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learning communities in mathematics education
focus on supporting teachers to develop their own
mathematical knowledge and their mathematical
knowledge for teaching, particularly in relation to
student thinking (Brodie 2011; Curry 2008;
Jaworski 2008; Katz et al. 2009; Little 1990).

The notion of collective learning in profes-
sional learning communities is important. The
idea is that teachers who work together learn
together, making for longer-term sustainability
of new practices and promoting community-
generated shifts in practice, which are likely to
provide learners with more coherent experiences
across the subject or school (Horn 2005;
McLaughlin and Talbert 2008). Professional
learning communities support teachers to “coa-
lesce around a shared vision of what counts for
high-quality teaching and learning and begin to
take collective responsibility for the students they
teach” (Louis and Marks 1998, p. 535). Ulti-
mately, a school-wide culture of collaboration
can be promoted, although working across subject
disciplines can distract from a focus on subject
knowledge (Curry 2008). Networked learning
communities, where professional learning com-
munities come together across schools in net-
works, provide further support and sustainability
for individual communities and improved teacher
practices (Katz and Earl 2010).

There is differing terminology for learning
communities, which illuminate subtle but impor-
tant differences in how communities are consti-
tuted. These include “communities of practice,”
“communities of enquiry,” and “critical friends
groups.” The key emphasis in the notion of pro-
fessional learning is that it signals the focus of the
community and the learning as both data-
informed and knowledge-based.
Data-Informed and Knowledge-Based
Enquiry

Professional learning communities can be
established within or across subjects, and in each
case the communities would choose different
focuses to work on. Working within mathematics
suggests that the focus would be on knowledge of
and intellectual engagement with mathematics
and the teaching and learning of mathematics.
Effective communities focus on addressing stu-
dent needs through a focus on student achieve-
ment and student work, joint lesson and
curriculum planning, and joint observations and
reflection on practice, through watching actual
classroom lessons or videotaped recordings of
classroom practice. Mathematics learning com-
munities support teachers to focus on learner
thinking through examples of learners solving
rich problems (Borko et al. 2008; Whitcomb
et al. 2009) or through teachers’ analyzing learner
errors (Brodie 2011).

In many cases data comes from national tests,
and teachers work together to understand the data
that the tests present and to think about ways to
improve their practice that the data suggests.
Working with data as a mechanism to improve
test scores can be seen as a regulatory practice,
with external accountability to school managers
and education department officials. Proponents of
teacher-empowered professional learning com-
munities argue strongly that the goal of such
data analysis must be to inform teachers’ conver-
sations in the communities, as a form of internal
accountability to knowledge and learning (Earl
and Katz 2006). Data can also include teachers’
own tests, interviews with learners, learners’
work, and classroom observations or videotapes.

The professional focus of professional learning
communities requires that the learning in these
communities be supported by a knowledge base
as well as by data. As teachers engage with data,
their emerging ideas are brought into contact with
more general findings from research. Jackson and
Temperley (2008) argue for a model where prac-
titioner knowledge of the subject, learners, and the
local context meets public knowledge, which is
knowledge from research and best practice. The
interaction between data from classrooms and
wider public knowledge is central in creating pro-
fessional knowledge, for two reasons. First, with-
out outside ideas coming into the communities’
conversations, they can become solipsistic and
self-preserving and may continue to maintain the
status quo rather than invigorate practice. Second,
data and knowledge work together to promote
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internal accountability, to the learners and
teachers and to support the creation of new pro-
fessional knowledge, which is research-based,
locally relevant, and collectively generated.
(Data-informed practice is different from
evidence-based practice. Evidence-based practice
suggests that only research-based evidence is
good enough to inform teacher professional
development. Data-informed professional devel-
opment suggests that teachers themselves, with
some expert guidance, can and should interpret
data that is available to them and integrate
research knowledge with their local
circumstances).
P

Leadership

Leadership in professional learning communities
is central, particularly in helping to bring together
data from practice and the findings of research.
Leaders can be school-based or external, for
example, district officials or teacher-educators
from universities. For long-term sustainability,
there should be leadership within the school, or
within a cluster of schools.

Two key roles have been established as impor-
tant for leaders in professional learning commu-
nities. The first is promoting a culture of inquiry
and mutual respect, trust, and care, where teachers
are able to work together to understand challenges
in their schools more deeply and support each
other in the specific challenges that they face as
teachers. The second is to support teachers to
focus on their students’ knowledge and subse-
quently their own knowledge and teaching prac-
tices. The second role is crucial in supporting
professional learning communities where
subject-specific depth is the goal, depth in learn-
ing and knowledge for both teachers and learners.

It is important for leaders in professional learn-
ing communities to also be learners and to be able
to admit their ownweaknesses (Brodie 2011; Katz
et al. 2009). At the same time, it is important for
leaders to have and present expertise, which helps
the community to move forward. In mathematics,
leaders need to recognize opportunities for devel-
oping mathematical knowledge and knowledge of
learning and teaching mathematics among
teachers, for example, what counts as appropriate
mathematical explanations, representations, and
justifications and how these can be communicated
with learners. Other functions for leaders in pro-
fessional learning communities are developing
teachers’ capacities to analyze classroom data;
supporting teachers to observe and interpret data
rather than evaluate and judge practice;
supporting teachers to choose appropriate prob-
lem of practices to work on, once the data has been
interpreted; and helping teachers to work on
improving their practice and monitoring their
own and progress in doing this, as well as their
learners’ progress (Boudett and Steele 2007). So
leadership in professional learning communities is
a highly specialized task.
Impact and Research

There is a growing body of research that shows
that professional learning communities do pro-
mote improved teacher practices and improved
student achievement (Stoll et al. 2006). However,
the evidence is mixed depending on which aspects
of learning different studies choose to focus
on. Research into professional learning commu-
nities invariably must confront how to recognize
and describe learning, both in the conversations of
the community and in classrooms. It is well
known from situated theory that learning does
not travel untransformed between sites, rather it
is recontextualized and transformed as it travels
from classrooms to communities and back again.

A second issue that research into professional
learning communities must confront is the rela-
tionship between group and individual learning.
While the focus of the community is on group
learning and interdependence, ultimately each
person contributes in particular ways to the com-
munity and brings particular expertise, and differ-
ent people will learn and grow in different ways.
Kazemi and Hubbard (2008) suggest a situated
framework for research into how the individual
and the group coevolve in mathematics profes-
sional learning communities. Group and individ-
ual trajectories can be examined in relationship to
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each other, through a focus on particular practices
and artifacts of practice discussed by the commu-
nity. How particular practices travel from the
classroom into the community and back again
can be traced through linking what happens in
the community to what happens in teachers’
classrooms.
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Characteristics

Cognitive psychology, developmental psychol-
ogy, and educational psychology are general
fields of research for which mathematics educa-
tion naturally seems one among many domains of
application. However, the history of these
domains of research and of the development of
research in mathematics education is much more
complex, and not at all hierarchical. For example,
in their monumental Human Problem Solving
(Newell and Simon 1972), Newell and Simon
acknowledged that many of their ideas (which
became among the fundamentals of Cognitive
Psychology) were largely inspired from George
Pólya’s How to Solve It (Pólya 1945). Another
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prestigious link is of course Piaget’s
Epistémologie Génétique – his theory of human
development: the theory was based on memorable
experiments in which Piaget designed conserva-
tion tasks in which mathematical entities were
focused on (number, quantity, length, proportions,
etc.). Also Cole’s Cultural Psychology (1996) is
largely based on the comparison between mathe-
matical practices in different societies. The rea-
sons for these ties are profound, and beyond the
very different approaches adopted, mathematics
represents a domain through which human cogni-
tion, cognitive development, or human develop-
ment can be studied. We focus here on some
psychological approaches adopted in mathematics
education. Although these approaches have come
out at different times, approaches were not merely
replaced and each of them is still vibrant in the
community of researchers in mathematics
education.
P

The Constructivist Approach

Our review of psychological approaches in math-
ematics is not exhaustive. We mention the
approaches that contribute to our understanding
of learning and teaching processes and that can
help in what we consider as their improvement.
For this reason, we overlooked behavioristic
approaches. We will begin with constructivism –
a learning theory with a very long history that can
be traced to John Dewey. The simple and general
idea according to which learning occurs when
humans actively engage in tasks has been under-
stood very differently by different psychologists.
For some, constructivism means discovery-based
teaching techniques, while for others, it means
self-directedness and creativity. Wertsch (1998)
adopts a social version of constructivism –
socioculturalism – to encourage the learner to
arrive at his or her version of the truth, influenced
by his or her background, culture, or embedded
worldview. Historical developments and symbol
systems, such as language, logic, and mathemati-
cal systems, are inherited by the learner as a mem-
ber of a particular culture, and these are learned
throughout the learner’s life. The fuzziness and
generality of the definition of constructivism led
to inconsistent results. It also led to the memorable
“math wars” controversy in the United States that
followed the implementation of constructivist-
inspired curricula in schools with textbooks
based on new standards. In spite of many short-
comings, the constructivist approach had the merit
to lead scientists to consider the educational impli-
cations of the theories of human development of
Piaget and Vygotsky in particular in mathematics
education (von Glasersfeld 1989; Cobb and
Bauersfeld 1995).
The Piagetian Approach: Research on
Conceptions and Conceptual Change

The impact of Piaget’s theory of human develop-
ment had and still has an immense impact on
research on mathematics education. Many
researchers adapted the Piagetian stages of cogni-
tive growth to describe learning in school mathe-
matics. Collis’ research on formal operations and
his notion of closure (Collis 1975) are examples of
this adaptation. With the multi-base blocks (also
known as Dienes blocks), Dienes (1971) was also
inspired by Piaget’s general idea that knowledge
and abilities are organized around experience to
sow the seeds of contemporary uses of manipula-
tive materials in mathematics instruction to teach
structures to young students.

Since the 1970s researchers in science educa-
tion realized that students bring to learning tasks
alternative frameworks or misconceptions that are
robust and difficult to extinguish. The idea of
misconception echoed Piagetian ideas according
to which children consistently elaborate under-
standings of reality that do not fit scientific stan-
dards. Researchers in mathematics education
adopted these ideas in terms of tacit models
(Fischbein 1989) or of students’ concept images
(Tall and Vinner 1981). These frameworks were
seen as theories to be replaced by the accepted,
correct scientific views. Bringing these insights
into the playground of learning and development
was a natural step achieved through the idea of
conceptual change. This idea is used to character-
ize the kind of learning required when new
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information comes in conflict with the learners’
prior knowledge usually acquired on the basis of
everyday experiences. It is claimed that then a
major reorganization of prior knowledge is
required – a conceptual change. The phenomenon
of conceptual change was first identified for sci-
entific concepts and then in mathematics (e.g., the
acquisition of the concept of fraction requires
radical changes in the preexisting concept of nat-
ural number, Hartnett and Gelman 1998). Mis-
conceptions were thought to develop when new
information is simply added to the incompatible
knowledge base, producing synthetic models, like
the belief that fractions are always smaller than the
unit. Learning tasks, in which students were faced
with a cognitive conflict, were expected to replace
their misconceptions by the current accepted con-
ception. Researchers in mathematics education
continue studying the discordances and conflicts
between many advanced mathematical concepts
and naïve mathematics. Intuitive beliefs may be
the cause of students’ systematic errors (Fischbein
1987; Stavy and Tirosh 2000; Verschaffel and De
Corte 1993). Incompatibility between prior
knowledge and incoming information is one
source of students’ difficulties in understanding
algebra (Kieran 1992), fractions (Hartnett and
Gelman 1998), and rational numbers
(Merenluoto and Lehtinen 2002). The conceptual
change approach is still vivid because of its
instructional implications that help to identify
concepts in mathematics that are going to cause
students great difficulty, to predict and explain
students’ systematic errors, to understand how
counterintuitive mathematical concepts emerge,
to find the appropriate bridging analogies, and
more generally, to develop students as intentional
learners with metacognitive skills required to
overcome the barriers imposed by their prior
knowledge (Schoenfeld 2002). However, harsh
critiques pointed out that cognitive conflict is not
an effective instructional strategy and that instruc-
tion that “confronts misconceptions with a view to
replacing them is misguided and unlikely to suc-
ceed” (Smith et al. 1993, p. 153). As a conse-
quence, misconceptions research in mathematics
education was abandoned in the early 1990s.
Rather, researchers began studying the knowledge
acquisition process in greater detail or as stated by
Smith et al. (1993) to focus on “detailed descrip-
tions of the evolution of knowledge systems”
(p. 154) over long periods of time.
Departing from Piaget: From Research
on Concept Formation to Teaching
Experiments

The fine-grained description of knowledge sys-
tems in mathematics education was initiated as an
effort to adapt his theory to mathematics educa-
tion (Skemp 1971). Theories of learning in math-
ematics were elaborated, among them the theory
of conceptual fields (Vergnaud 1983), the notion
of tool-object dialectic (Douady 1984, 1986), and
theories of process-object duality of mathemati-
cal conceptions (Sfard 1991; Dubinsky 1991).
Van Hiele’s theory of development of geometric
thinking (Van Hiele 2004) seems at a first glance
to fit Piaget’s view of development with its clear
stages. However, it clearly departed from Piaget’s
theory in the sense that changes result from teach-
ing rather than from independent construction on
the part of the learner. The method of the teaching
experiment was introduced to map trajectories in
the development of students’ mathematical con-
ceptions. Steffe et al. (2000) produced fine-
grained models of students’ evolving conceptions
that included particular types of interactions with
a teacher and other students. It showed that learn-
ing to think mathematically is all but a linear
process, but that what can be seen as mistakes
or confusions may be essential in the learning
process. Moreover, “misconceptions” often resist
teacher’s efforts, but they eventually are neces-
sary building blocks in the learning of concep-
tions. In the same vein, Schwarz et al. (2009)
elaborated the RBC model of abstraction in con-
text to identify the building blocks of mathemat-
ical abstraction which are often incomplete or
flawed. Such studies invite considering alterna-
tive approaches to understand the development of
mathematical thinking. The RBC model takes
into account the impressive development of
sociocultural approaches in mathematics
education.
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Sociocultural Approaches

Descriptions of students learning in teaching
experiments stressed the importance of the social
plane – of the interactions between teacher and
students. Vygotsky’s theory of human develop-
ment was a natural source of inspiration for
researchers in mathematics education in this con-
text. A series of seminal studies on street mathe-
matics (e.g., Nunes et al. 1993) on the ways
unschooled children used mathematical practices
showed the situational character of mathematical
activity. Rogoff’s (1990) integration of Piagetian
and Vygotskian theories to see in guided partici-
pation a central tenet of human development fitted
these developments in research in mathematics
education. Rogoff considered learning and devel-
opment as changes of practice. For her, learning is
mutual as the more knowledgeable (the teacher)
as well as students learn to attune their actions to
each other. Cobb and colleagues took the mathe-
matics classroom in its complexity as the natural
context for learning mathematics (Cobb et al.
2001; Yackel and Cobb 1996). He introduced the
fundamental notion of social and socio-
mathematical norms to point at constructs that
result from the recurring enactment of practices
in classrooms (an embryonic version of this
notion had already been elaborated by Bauersfeld
(1988)). Cobb and colleagues showed that those
norms are fundamental for studying individual
and group learning: learning as a change of prac-
tice entails identifying the establishment of vari-
ous norms. Vygotsky’s intersubjectivity as the
necessary condition for maintaining communica-
tion was replaced by Cobb and colleagues by
taken-as-shared beliefs. Cobb also considered
the mathematical practices of the classrooms
(standards of mathematical argumentation, ways
to reasoning with tools and symbols) as other
general collective constructs to be taken into
account to trace learning. Norms are constructed
in the mini-culture of the classroom in which
researchers are not only observers but actively
participate in the establishment of this mini-
culture. Cobb adopts here a new theoretical
approach in the Learning Sciences – Design
Research (Collins et al. 2004). This interesting
approach led to many studies in mathematics edu-
cation, but also raised the tough issue of general-
izability of design experiments.

Although according to Cobb and his followers,
learning is highly situational, knowledge that
emerges in the classroom is presented in a
decontextualized form that fits (or not) accepted
mathematical constructs. The writings of influen-
tial thinkers challenged this view. In
L’archéologie du savoir, Michel Foucault (1969)
convincingly traced the senses given to ideas such
as “madness” along the history through the anal-
ysis of texts. Instead of identifying knowledge as a
static entity, he forcefully claimed that human
knowledge should be viewed as “a kind of
discourse” – a special form of multimodal com-
munication. Leading mathematics education
researchers adopted this perspective (Lerman
2001; Kieran et al. 2002). In her theory of
commognition, Sfard (2008) viewed discourse as
what changes in the process of learning, and not
the internal mental state of an individual learner.
From this perspective, studying mathematics
learning means exploring processes of discourse
development. The methodology of the theory of
commognition relies on meticulous procedures of
data collecting and analysis. The methods of anal-
ysis are adaptations of techniques developed by
applied linguists or by discursively oriented social
scientists. The discourse of the more knowledge-
able other is for Sfard indispensable, not only as
an ancillary help for the discovering student but as
a discourse to which he or she should persist to
participate, in spite of the fact its nature is incom-
mensurable with the nature of his or her own
discourse. Sfard’s theory and Cobb’s theory,
which stemmed from research in mathematics
education, have become influential in the Learn-
ing Sciences in general.
Open Issues

Leading modern thinkers such as Bakhtin have
headed towards dialogism, a philosophy based
on dialogue as a symmetric and ethical relation
between agents. This philosophical development
has yielded new pedagogies that belong to what is
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called Dialogic Teaching, and new practices, for
example, (un-)guided small group collaborative
and argumentative practices, or teacher’s facilita-
tion of group work. A good example of dialogic
teaching enacted in mathematics classrooms is
Accountable Talk (Michaels et al. 2009). Dialogic
Teaching raises harsh psychological issues as in
contrast with sociocultural approaches for which
adult guidance directs emergent learning,
dialogism involves symmetric relations.

Numerous technological tools have been
designed by CSCL (Computer-Supported Collab-
orative Learning) scientists to facilitate (un-)guided
collaborative work for learning mathematics.
These new tools enable new discourse practices
with different synchronies and enriched blended
multimodalities (oral, chat, computer-mediated
actions, gestures). Virtual Math Teams (Stahl
2012) is a representative project which integrates
powerful dynamic mathematics applications such
as GeoGebra in a multiuser platform for (un)
guided group work on math problems, so that
small groups of students can share their mathemat-
ical explorations and co-construct geometric fig-
ures online. In a recent book, Translating Euclid,
Stahl (2013) convincingly shows how collaborat-
ing students can reinvent Euclidean geometry with
minimal guidance and suitable CSCL tools. The
possibilities opened by new technologies challenge
the tenets of sociocultural psychology: the fact that
students can collaborate during long periods with-
out adult guidance challenges neo-Vygotskian
approaches for which adult guidance is central for
development. To what extent can it be said that the
designed tools embody adult discourse? In spite of
the fact that the teacher is often absent, new forms
of participation of the teacher fit dialogism (e.g.,
moderation as caring but minimally intrusive guid-
ance). The psychological perspective that fit
changes in participation and the role of multiple
artifacts in these changes is an extension of the
Activity Theory, the theory of Expansive Learning
(Engeström 1987) to the learning of organizations
rather than the learning of individuals. The mech-
anisms of the emergent learning of the group are
still mysterious, though. It seems then, that, again,
mathematics education pushes psychology of
learning to unconquered lands.
Cross-References

▶Abstraction in Mathematics Education
▶Activity Theory in Mathematics Education
▶Argumentation in Mathematics Education
▶Collaborative Learning in Mathematics
Education

▶Concept Development inMathematics Education
▶Constructivism in Mathematics Education
▶Constructivist Teaching Experiment
▶Design Research in Mathematics Education
▶ Information and Communication Technology
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